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Abstract

In this work-in-progress paper, we study the
landscape of the empirical loss function of a
feed-forward neural network, from the perspec-
tive of the existence and nature of its critical
points, with respect to the weights of the net-
work, for synthetically-generated datasets. Our
analysis provides a simple method to achieve an
exact construction of one or more critical points
of the network, by controlling the dependent
variables in the training set for a regression prob-
lem. Our approach can be easily extended to con-
trol the entries of the Hessian of the loss function
allowing to determine the nature of the critical
points. This implies that, by modifying the de-
pendent variables for a sufficiently large number
of points in the training set, an arbitrarily com-
plex landscape for the empirical risk can be gen-
erated, by creating arbitrary critical points. The
approach we describe in the paper not only can be
adopted to generate synthetic datasets useful to
evaluate the performance of different training al-
gorithms in the presence of arbitrary landscapes,
but more importantly it can help to achieve a bet-
ter understanding of the mechanisms that allow
the efficient optimization of highly non-convex
functions during the training of deep neural net-
works. Our analysis, which is presented here in
the context of deep learning, can be extended to
the more general case of the study of the land-
scape associated to other quadratic loss functions
for nonlinear regression problems.

1. Introduction
In statistics and machine learning, a common approach for
the estimation of the parameters of a model, for instance for
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regression or classification problems, is based on the mini-
mization of an average loss function, called empirical risk,
over the points in the training set. The empirical risk, de-
fined over the space of the parameters of the model, gives
a measure of the fit of the model to describe the map be-
tween input and output variables with respect to the points
in the dataset. A classical example is given by the use of the
square loss for regression problems. During training, stan-
dard inference procedures tend to minimize the empirical
loss over the training set, either with closed formula solu-
tions, when they exist, such as for ordinary least squares,
or by iterative algorithms, as in the case of stochastic gra-
dient descent. The landscape of the average loss function
represents how the measure of the fit of a given model to
data changes for different assignments of the parameters of
the model itself. Notice that the minimum of the empiri-
cal risk, especially for highly nonlinear models, may lead
to overfitting, that is why in practice penalization terms are
often added during training, changing the landscape of the
function itself.

In the following we refer to the common distinction in ma-
chine learning between model fitting, i.e., the procedure for
the estimation of the parameters of the model, which cor-
responds to a search in the parameter space with the pur-
pose of minimizing the average loss function; and model
selection, i.e., the procedure for the choice of a specific
model, which in turns determine the space of parameters
and the landscape of the empirical for given a dataset. The
landscape of the average loss function depends from one
side by the points in the training set, and from the other by
model selection, for instance by the choice of the regres-
sion function. For deep neural networks, the landscape is
determined by the choice of the topology of the network,
such as the number of hidden layers, the number of their
hidden units, and the activation functions, which produce
different landscapes for the empirical loss function.

The characterization of the landscape of the average loss
function reveals essential information about the coupling
between the chosen model and the inference task (Mei
et al., 2016), for instance about the fit of the model over the
data, the robustness of the solution, some indicators which
may suggest the presence of overfitting, possible symme-
tries in the space of parameters, and so on. Moreover, the
properties of the landscape are strictly connected to the dif-
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ficulties that an algorithm has to face in the optimization
of the empirical risk itself. Smooth landscapes, as well as
the presence of few local minima and plateaux, imply, in
general, that local search methods will be more effective
during training (Dauphin et al., 2014).

The high dimensionality of the parameter space of a neu-
ral network makes more challenging the task of studying
the landscape of the empirical risk. Tools to find, generate,
and approximate critical points of the network, i.e., those
points where the gradient of the empirical risk is vanish-
ing, can be particularly useful in this type of analysis. In
this paper, we propose a technique that can help in con-
structing toy models and counter examples for the study
of the optimization process during training. Here we re-
strict our analysis to the case of feed-forward deep neural
networks with fully connected layers for regression tasks.
Our approach, however, can be easily generalized to other
topologies of feed-forward networks, such as convolutional
neural networks.

Recently, (Swirszcz et al., 2017) have suggested that syn-
thetic datasets, and the study of their landscapes, can pro-
vide interesting insights on the learning process during
training. On the other side, the study of the effects of ad-
hoc modifications of the points of a dataset, during training
or testing, is central for the growing literature on adversar-
ial examples in deep learning (Goodfellow et al., 2014a),
and more in general in machine learning (Dalvi et al., 2004;
Lowd & Meek, 2005). However, notice that differently
from adversarial examples, which are constructed by per-
turbing the inputs, in this paper we study perturbations of
the dependent variables in regression problems.

The paper is organized as follows. In Section 2, after in-
troducing the standard notation for the computation of the
output of a feed-forward network, and for the average loss
function used for regression problems, we present our ap-
proach to the generation of a synthetic dataset which allows
us to generate landscape with an arbitrary number of criti-
cal points. Next, we present a simple toy example for which
we can choose new labels in the dataset for which two dif-
ferent assignments of the weights have vanishing gradient.
For this example, we also explore the landscape of the em-
pirical risk between these two critical points. Finally, in
Section 3 we conclude the paper and present future direc-
tions of research.

2. Non-Linear Regression
We start this section by introducing standard
notation in the literature of deep neural net-
works. Let us assume a training set of m couples{(

x(i),y(i)
)
∈ Rdx × Rdy , i = 1, . . . , m

}
where dx and

dy denote the dimensions of the input and the output
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Figure 1. In this plot the dependent variables of a sub set of points
of the dataset (old y blue circles) are changed (new y green
triangles). The new dataset (green triangles plus the red circle)
is built to make the neural network a critical network. The blue
surface represents the output of the neural network for the partic-
ular assignment of weights. The old dataset (blue and red circles)
were built adding noise to the output of the network. The new y
are mostly closer to the surface.

layer, respectively. We can characterize the topology of
a feed-forward network by fixing the number of nodes
in each hidden layer by (d0, d1, . . . , dH , dH+1), with
d0 = dx and dH+1 = dy , for a network with H hidden
layers. Moreover, let us denote with al a real function
al : Rdl → Rdl such that

al (z) =

 ãl (z1)
...

ãl (zdl
)

 ,

i.e., al acts element-wise on a vector. Let Wl ∈ Rdl+1,dl,

with l = 0, . . . ,H, the matrix of weights associated to the
fully connected network, we can write the output ŷ of a
neural network as

ŷ(x;W ) = al(W
lal−1(. . . a1(W 1a0(W 0x)) . . . )) .

(1)

In the following, without any loss of generality, to maintain
a more compact notation we omit for each layer l, with
l = 0, . . . ,H , the biases bl.

In regression analysis, we look for minimization of the em-
pirical risk which in the usual case of the square loss func-
tion reads

L =
1

m

m∑
i=1

(
y(i) − ŷ

(
x(i);W

))2

The global minima of the empirical risk with respect to
the weights of the network W represent the target of the
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search during training. However, first-order optimization
algorithms, which are usually used in training of neural
networks, cannot discriminate between global minima and
other types of critical points such as local minima or sad-
dle points. Therefore, it becomes crucial to study the land-
scape of the average loss function. It has been argued that
the power of neural network resides in the nature of the
datasets that have been used to train the network (Lin et al.,
2016), if this hypothesis would be true, than that would also
be its weakness: neural networks can be easily fooled using
synthetic datasets (Goodfellow et al., 2014a).

In this work-in-progress paper, we aim to study the problem
of the landscape, from the point of view of the train set. We
start from the computation of the the gradient of the square
loss function for regression problems

∇WL =

= − 2

m

m∑
i=1

∇W

[
ŷ(x(i);W )T

] (
y(i) − ŷ

(
x(i);W

))
.

(2)

A critical point is defined to be an assignment W such that
∇WL = 0. This provides a system of N =

∑H
l=0 dldl+1

equations that are in general non linear in W , therefore the
training process requires local search algorithms, such as
stochastic gradient descend, able to converge only to local
minima of the target function.

If we are building a synthetic dataset, we can look at the
equations in ∇WL = 0, provided an arbitrary set of
weights, as a linear system where the unknown are the
y(i)s, constructing in this way a dataset for which the net-
work with weights W is indeed a critical network.

If we choose to have a dataset with the same number
of points of the number of weights, namely m ≡ N ,
the solution of the system is particularly simple, y(i) =
ŷ(x̊(i);W ) where x̊(i) are points arbitrarily fixed. That
would represent the perfect overfit. When m > N the
system is under-determined and the solution is in general
not unique. We can arbitrarily fix a subset of datapoints(
x̊(f), ẙ(f)

)
with f = 1, . . . , k ≡ m − N , and input data

x̊(i) i = k+ 1, . . . ,m and solve the system for the remain-
ing y(i). The system would read AW Y + b = 0 where

Y =

 y(k+1)

...
y(m)

 ,

AW =
[
∇W

[
ŷ(x̊(k+1);W )T

]
, . . . ,∇W

[
ŷ(x̊(m);W )T

]]
,

b = −
m∑

i=k+1

∇W

[
ŷ(̊x(i);W )T

]
ŷ(x̊(i);W )

+

k∑
i=1

∇W

[
ŷ(̊x(i);W )T

] (
ẙ(i) − ŷ(x̊(i);W )

)
(3)

therefore the rank of the square matrixA of dimensionN×
N dy determines whether there existsN different solutions.
This dataset would lead to critical neural network without
knowing if it would represent a minimum, a maximum or a
saddle point of the loss function.

If we are interested in creating a completely artificial
dataset, a natural request would be to try to minimize L.
This is an optimization problem of a quadratic function
subject to a linear constraint

arg min
{y(i)}m

i=1

L

s. t. ∇WL = 0 for
{
y(i)

}m

i=1
.

However, we can use the calculation in the previous sec-
tion to solve the constrained problem. If we split the de-
pendent variables as in (3), namely Y̊ ≡

{
ẙ(f)

}
with

f = 1, . . . , k ≡ m−N and Y , andAW from the constraint
in (3) is invertible, we can parametrize the submanifold of
dimension m−N defined by the constrains with

Y = −A−1
W b

(
Y̊
)
. (4)

In this subspace, the loss is at a critical point with respect
to the dependent variable if

∇Y̊ L = 0. (5)

This provide m − N equations that can fix, together with
Equation 4, all the dependent variables of the dataset.

A quite intriguing calculation is to evaluate two possible
critical points for the same dataset. This phenomenon can
occur because of the non-convexity of the loss function for
the neural network. It could represent the case where a bad
minimum and a global minimum appear in the same net-
work. Or the case where one critical point is a saddle point
and one is the minimum. This can help in studying the
more efficient trajectories that a training algorithm should
perform to avoid to be stacked for long time around non
desired critical points. Let us assume we have two sets of
weights that we want to be critical W ′ and W ′′, the system
becomes

AW ′,W ′′Y + b = 0 where AW ′,W ′′ ≡
[
AW ′

AW ′′

]
(6)
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Figure 2. For α = 0, the neural network has weights W̃ (normally distributed) and, for the synthetic dataset, it is in a critical point. For
α = 1, the neural network has different weights W ′, which for the same dataset still represent a critical point. The plot shows how the
value of the loss function changes along a linear combination of the two critical weight vectors, as in Equation 7 for different couples of
critical weights W̃ ,W ′. Notice the high values of the loss function, which are a consequence of our procedure which ensure the two
critical points in the landscape of the loss function.

while Y and b, are the same of (3). Here there are 2N
equations, therefore the dimension of the dataset has to be
m ≥ 2N . Once the two critical networks are fixed, it is
possible and very interesting to visualize the landscape as
function

W = (1− α)W ′ + αW ′′ (7)

as proposed in (Goodfellow et al., 2014b).

Interestingly enough, we can also also move to the second-
order analysis, and study the Hessian. We recall that if the
Hessian is a positive defined matrix, then the critical point
is a minimum. For this, we need to to evaluate a system
of N +N (N + 1) /2 equations. At a critical point, where
the gradient of the empirical risk is vanishing, the Hessian
matrix reads

H [L] (W ) =

= − 2

m

m∑
i=1

(
y(i) − ŷ

)T
∇W ′

[
∇W

[
ŷT
]T ]

,

where ŷ is a shorthand for ŷ
(
x(i);W

)
clearly, at the per-

fect overfit, the Hessian is everywhere zero.

3. Conclusions and Future Works
This work-in-progress paper deals with the study of the
landscape of the empirical risk for non-linear regression
problems, in particular for feed-forward neural networks.
We have presented a simple procedure which allows us to
generate landscapes for the average loss function which ad-
mit among their critical points an arbitrary set of of points.
Our method is general, in the sense that it can be applied
not only in deep learning for any regression problem with
a square loss function, independently from the topology of
the network and the activation functions, but more in gen-
eral for non-linear regression problems, whenever the gra-

dient of the average loss function is linear in the dependent
variables.

The method that we have proposed can be useful in dif-
ferent scenarios, for instance for the generation of fully-
synthetic datasets, or for the perturbation of existing ones.
From this perspective a natural extension to this work
would be the study of the behavior of different training al-
gorithms in presence of pathological landscapes, for which
we could control the existence and nature of different criti-
cal points on the space of the weights, cf. (Shalev-Shwartz
et al., 2017). Another analysis in which our method could
be useful would be related to the study of the landscape
of the empirical risk in presence of sharp and local min-
ima (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016;
Dinh et al., 2017), which could be easily generated with our
method, for fixed assignments of the weights. Finally, an-
other scenario would be the study of impact of the present
of saddle-points, which have been identified as one of the
possible factors which slow down gradient descent meth-
ods in high-dimensional spaces (Dauphin et al., 2014).

As a concluding remark, we would like to extend this type
of analysis to other types of loss functions, in non-linear
regression, as well as to classification problems.
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