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Abstract
Variational autoencoders (VAE) are directed gen-
erative models that learn factorial latent vari-
ables. As noted by Burda et al. (2015), these
models exhibit the problem of factor over-
pruning where a significant number of stochas-
tic factors fail to learn anything and become
inactive. This can limit their modeling power
and their ability to learn diverse and meaning-
ful latent representations. In this paper, we eval-
uate several methods to address this problem
and propose a more effective model-based ap-
proach called the epitomic variational autoen-
coder (eVAE). The so-called epitomes of this
model are groups of mutually exclusive latent
factors that compete to explain the data. This
approach helps prevent inactive units since each
group is pressured to explain the data. We com-
pare the approaches with qualitative and quanti-
tative results on MNIST and TFD datasets. Our
results show that eVAE makes efficient use of
model capacity and generalizes better than VAE.

1. Introduction
Unsupervised learning holds the promise of learning the
inherent structure in data so as to enable many future tasks
including generation, prediction and visualization. Gen-
erative modeling is an approach to unsupervised learning
wherein an explicit stochastic generative model of data is
defined; independent draws from this model are to produce
samples from the underlying data distribution, while the
learned latent structure is useful for prediction, classifica-
tion and visualization tasks.

Variational autoencoder (VAE) (Kingma & Welling, 2014)
is an example of one such generative model. VAE pairs a
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top-down generative model with a bottom-up recognition
network for amortized probabilistic inference, and jointly
trains them to maximize a variational lower bound on the
data likelihood. A number of recent works use VAE as a
modeling framework, including iterative conditional gener-
ation of images (Gregor et al., 2015) and conditional future
frame prediction (Xue et al., 2016).

The generative model of VAE has a set of independent
stochastic latent variables that govern data generation;
these variables aim to capture various factors of varia-
tion. However, a number of studies (Bowman et al., 2015;
Kaae Sonderby et al., 2016; Kingma et al., 2016) have
noted that straightforward implementations that optimize
the variational bound on the probability of observations
converge to a solution in which only a small subset of the
stochastic latent units are active. While it may seem advan-
tageous that the model can automatically regularize itself,
the optimization leads to learning a suboptimal generative
model by limiting its capacity to use only a small num-
ber of stochastic units. We call this well-known issue with
training VAE as ’over-pruning’. Existing methods pro-
pose training schemes to tackle the over-pruning problem
that arises due to pre-maturely deactivating units (Bowman
et al., 2015; Kaae Sonderby et al., 2016; Kingma et al.,
2016). For instance, (Kingma et al., 2016) enforces min-
imum KL contribution from subsets of latent units while
(Bowman et al., 2015) use KL cost annealing. However,
these schemes are hand-tuned and takes away the princi-
pled regularization scheme that is built into VAE.

We address the over-pruning problem using a model-based
approach. We present an extension of VAE called epito-
mic variational autoencoder (Epitomic VAE, or eVAE, for
short) that automatically learns to utilize its model capacity
more effectively, leading to better generalization. The mo-
tivation for eVAE stems from the following observation:
Consider the task of learning a D-dimensional representa-
tion for the examples in a given dataset. A single exam-
ple in the dataset can be sufficiently embedded in a smaller
K-dimensional (K � D) subspace of D. However, dif-
ferent data points may need different subspaces, hence the
need for D. Sparse coding methods also exploit a similar
hypothesis. Epitomic VAE exploits sparsity using an ad-
ditional categorical latent variable in the encoder-decoder
architecture of the VAE. Each value of the variable acti-
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vates only a contiguous subset of latent stochastic variables
to generate an observation. This enables learning multiple
shared subspaces such that each subspace specializes, and
also increases the use of model capacity (Fig. 3), enabling
better representation. The choice of the name Epitomic
VAE comes from the fact that multiple miniature models
with shared parameters are trained simultaneously.

The rest of the paper is organized as follows. We first de-
scribe variational autoencoders and mathematically show
the model pruning effect in § 2 and § 3. We then present
our epitomic VAE model in § 4 that overcomes these short-
comings. Experiments showing qualitative and quantitative
results are presented in § 5. We discuss related work in § 6,
and conclude in § 7.

2. Variational Autoencoders
The generative model of a VAE consists of first generating
a sample from a D-dimensional stochastic variable z that is
distributed according to a standard Gaussian:

p(z) =

D∏
d=1

N (zd; 0, 1) (1)

Each component zi captures some latent source of variabil-
ity in the data. Given z, the N-dimensional observation x
is generated from a parametric family of distributions such
as a Gaussian:

pθ(x|z) = N (x; f1(z), exp(f2(z))) (2)

where f1 and f2 are non-linear deterministic functions of z
modeled using neural networks, and θ denotes the parame-
ters of the generative model.

The model is trained by optimizing the likelihood p(X|θ)
using a dataset X of T i.i.d. samples. Since p(z|x) is
intractable, VAE approximates the exact posterior using a
variational approximation that is amortized across the train-
ing set, using a neural network (recognition network) with
parameters φ. The resulting variational bound is

logpθ(X) =

T∑
t=1

log

∫
z

pθ(x
(t), z)

≥
T∑
t=1

Eqφ(z|x(t)) log p(x
(t)|z)−KL

[
qφ(z|x(t)) ‖ p(z)

]
(3)

The model is trained using backpropagation to minimize:

Cvae = −
T∑
t=1

Eqφ(z|x(t)) log p(x
(t)|z)

+
T∑
t=1

D∑
d=1

KL
(
qφ(zd|x(t)) ‖ p(zd)

) (4)
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Figure 1: Unit activity and KL term for a 50-unit VAE (sorted
by activity). Activity shows correlation with KL term. Highly
active units have a high KL with the prior; this mismatch creates a
discrepancy between reconstruction and generation performance.

Cvae trade-offs between explaining the data (first term) and
ensuring that the posterior distribution is close to the prior
p(z) (second term).

3. Over-pruning
We can better understand over-pruning in the VAE by con-
sidering different ways to minimize the sum of two terms
in Cvae. The first term encourages proper reconstruction
while the second term captures the divergence between the
posterior q(zd) and its Gaussian distributed prior p(zd), in-
dependently for each component. The easiest way to min-
imize the sum is to have a large number of components
collapse to the prior p(zd) to compensate for a few highly
non-Gaussian components that help reconstruction. This
is achieved by turning off the corresponding component1.
This behavior is noticeable in the early iterations of training
when the model for log p(x|z) is quite impoverished, and
improvement to the loss can be easily obtained by optimiz-
ing this KL term. However, once the units have become
inactive, it is almost impossible to resurrect them.

A quantity that is useful in understanding this effect is
the activity level of a unit. Following (Burda et al.,
2015), we define a unit to be used, or “active”, if Au =
Covx(Eu∼q(u|x)[u]) > 0.02. In Figure 1 we plot the ac-
tivity level and KL-divergence in Cvae for each component
of a 50-unit VAE trained on MNIST. This result illustrates
that all inactive units have collapsed to the prior, whereas
active units are relatively far from the prior.

One could argue that over-pruning is a feature since the

1log variance is modeled using the neural network, so turning
it off to 0 corresponds to a variance of 1.
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Figure 2: Sorted activity of latent units and corresponding gen-
erations on MNIST, for a 50-d VAE with a hidden layer of 500
units. Shown for varying values of the KL weight λ. When λ = 1,
only 30 units are active. As λ is decreased, more units are active;
however generation does not improve since the model uses the
capacity to model increasingly well only regions of the posterior
manifold near training samples (see reconstructions in Fig. 9).

model seems to discard unnecessary capacity. However,
we observe over-pruning even when the model underfits
the data. Moreover, over-pruning creates a discrepancy be-
tween training and generation time since it allows some
components q(zd) to be highly different from the prior. In-
stead, it is desirable for each individual component to be
close to the prior, since generation occurs by sampling from
the prior.

3.1. Weighting the KL term

One approach to reducing over-pruning is to introduce a
trade-off between the two terms using a parameter λ:

−Eqφ(z|x)[log p(x|z)] + λ

D∑
i=1

KL
(
qφ(zi|x) ‖ p(zi)

)
λ controls the importance of keeping the information en-
coded in z close to the prior. λ = 0 corresponds to a vanilla
autoencoder, and λ = 1 to the correct VAE objective. Fig. 2
shows the effect of λ on unit activity and generation. While
tuning down λ increases the number of active units, sam-
ples generated from the model are still poor. This is be-
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Figure 3: Adding dropout to a VAE (here, dropout rate 0.5
is shown) can prevent the model from pruning units, shown for
MNIST. However, in contrast to eVAE, it uses the additional units
to encode redundancy, not additional information, and therefore
does not address the problem. eVAE is able to utilize the full la-
tent capacity with all units active. Compare generation results for
dropout VAE with eVAE in Fig. 4 and Fig. 6, respectively.

cause at small values of λ, the model becomes closer to
a vanilla autoencoder and hence spends its capacity in en-
suring that reconstruction of the training set is optimized
(sharper reconstructions as a function of λ are shown in
Appendix § 9.1), at the cost of generation capability.

3.2. Dropout VAE

Another approach is to add dropout to the latent variable z
of the VAE (Dropout VAE). While this increases the num-
ber of active units (Fig. 3), it generalizes poorly as it uses
the dropout layers to merely replicate representation. This
results in blurriness in both generation and reconstruction,
and illustrates that simply utilizing additional units is not
sufficient for proper utilization of these units to model ad-
ditional factors of variation, as seen in Fig. 4.

4. eVAE: A model-based approach
We propose epitomic variational autoencoders (eVAE) to
overcome the over-pruning problem of VAEs. We base
this on the observation that while we may need a D-
dimensional representation to accurately represent every
example in a dataset, each individual example can be rep-
resented with a smaller K-dimensional subspace. As an
example, consider MNIST with its variability in terms of
digits, strokes and thickness of ink, to name a few. While
the overall D is large, it is likely that only a few K dimen-
sions ofD are needed to capture the variability in strokes of
some digits (see Fig. 5). Epitomic VAE can be viewed as a
variational autoencoder with latent stochastic dimension D
that is composed of a number of smaller variational autoen-
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(a) Reconstruction (b) Generation

Figure 4: Dropout VAE on MNIST: Both generation and recon-
struction are blurry. This is because the additional active units are
used to encode redundant information.

coders called epitomes, such that each epitome partially
shares its encoder-decoder architecture with other epito-
mes in the composition. In this paper, we assume simple
structured sparsity for each epitome: in particular, only K
contiguous dimensions of D are active2.

The generative process can be described as follows: A D-
dimensional stochastic variable z is drawn from a standard
multivariate Gaussian p(z) = N (z; 0, I). In tandem, an
epitome is implicitly chosen through an epitome selector
variable y, which has a uniform prior over possible epito-
mes. TheN -dimensional observation x is then drawn from
a Gaussian distribution:

pθ(x|y, z) = N (x; f1(my � z), exp(f2(my � z))) (5)

my enforces the epitome constraint: it is also a D-
dimensional vector that is zero everywhere except K con-
tiguous dimensions that correspond to the epitome dictated
by y. � is element-wise multiplication between the two
operands. Thus, my masks the dimensions of z other than
those dictated by the choice of y. Fig. 5 illustrates this
for an 8-d z with epitome size K = 2, such that there are
four possible epitomes (the model also allows for overlap-
ping epitomes, but this is not shown for illustration pur-
poses). Epitome structure is defined using sizeK and stride
s, where s = 1 corresponds to full overlap in D dimen-
sions3. Our model generalizes the VAE and collapses to a
VAE when D = K = s.

2The model also allows for incorporating other forms of struc-
tured sparsity.

3The strided epitome structure allows for learning O(D) spe-
cialized subspaces, that when sampled during generation can each
produce good samples. In contrast, if only a simple sparsity prior
is introduced over arbitrary subsets (e.g. with Bernoulli latent
units to specify if a unit is active for a particular example), it can
lead to poor generation results, which we confirmed empirically
but do not report. The reason for this is as follows: due to an expo-
nential number of potential combinations of latent units, sampling

f1(�) and f2(�) define non-linear deterministic transforma-
tions of � modeled using neural networks. Note that the
model does not snip off the K dimensions corresponding
to an epitome, but instead ignores the D − K dimensions
that are not part of the chosen epitome. While the same de-
terministic functions f1 and f2 are used for any choice of
epitome, the functions can still specialize due to the spar-
sity of their inputs. Neighboring epitomes will have more
overlap than non-overlapping ones, which manifests itself
in the representation space; an intrinsic ordering in the vari-
ability is learned.

4.1. Overcoming over-pruning

Following (Kingma & Welling, 2014), we use a recogni-
tion network q(z, y|x) for approximate posterior inference,
with the functional form

q(z, y|x) = q(y|x)q(z|y,x)
= q(y|x)N (z;my � µ, exp (my � φ))

(6)

where µ = h1(x) and φ = h2(x) are neural networks that
map x to D-dimensional space. We use a similar masking
operation as the generative model. Unlike the generative
model (eq. 5), the masking operation defined by y operates
directly on outputs of the recognition network that char-
acterizes the parameters of q(z|y,x). Similar to VAE, the
lower bound on the log probability of a dataset can be de-
rived, leading to the cost function (negative bound):

Cevae = −
T∑
t=1

Eq(z,y|x(t))[log p(x
(t)|y, z)]

+

T∑
t=1

KL
[
qφ(y|x(t)) ‖ pθ(y)

]
+

T∑
t=1

∑
y

qφ(y|x(t))KL
[
qφ(z|y,x(t)) ‖ pθ(z)

]
(7)

eVAE departs from VAE in how the contribution from the
KL term is constrained. Consider the third term expanded:

T∑
t=1

∑
y

qφ(y|x(t))KL
[
qφ(z|y,x(t)) ‖ pθ(z)

]

=

T∑
t=1

∑
y

qφ(y|x(t))

D∑
d=1

1[md,y = 1]KL
[
q(zd|x(t)) ‖ p(zd)

]
,

(8)

where 1[?] is an indicator variable that evaluates to 1 if
only if its operand ? is true. Unlike in VAE where this KL

a subset from the prior during generation cannot be straightfor-
wardly guaranteed to be a good configuration for a subconcept in
the data, and often leads to uninterpretable samples.
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Figure 5: Left: Illustration of an epitomic VAE with dimension D=8, epitome size K=2 and stride S=2. In this depiction, the second
epitome is active. Right: Learned manifolds on MNIST for 4 different epitomes in a 20-d eVAE with size K = 2 and stride s = 1. We
observe that each epitome specializes on a coherent subset of examples; this enables increasing the diversity of the samples generated
while maintaining quality of the samples when the latent dimension is large.

term decomposes into independent KL for each zi, con-
tiguous dimensions of z are constrained by the choice of y.
In addition, the number of KL terms that will contribute to
Cevae for an input x(t) is exactly K by model design, with
the other D −K dimensions set to provide contribution of
zero. Thus, only a fraction of examples in the training set
contributes a possible non-zero value to zd’s KL term in
Cevae. This gives eVAE the ability to use more total units
without having to prematurely prune the model to optimize
the bound. In contrast, for Cvae to have a small contribution
from the KL term of a particular zd, it has to infer that unit
to have zero mean and unit variance for many examples in
the training set. In practice, this results in VAE completely
inactivating units.

Fig. 3 compares the activity levels of eVAE with VAE and
dropout VAE. Even though Dropout VAE has similar activ-
ity profile to eVAE, its generative model is impoverished as
it focuses on replicating representation as opposed to mod-
eling variability. This can be evidenced by comparing the
generation results from the two models, in Fig. 4 and Fig. 6.

4.2. Training

The generative model and the recognition network are
trained simultaneously, by minimizing Cevae in Eq. 7.

For the stochastic continuous variable z, we use the repa-
rameterization trick as in VAE, which reparameterizes the
recognition distribution in terms of auxiliary variables with
fixed distributions. This allows efficient sampling from the
posterior distribution as it becomes a deterministic function

of inputs and auxiliary variables.

For the discrete variable y, we cannot use the reparameter-
ization trick. We therefore approximate q(y|x) by a point
estimate y∗ so that q(y|x) = δ(y − y∗), where δ evaluates
to 1 only if y = y∗ and the best y∗ = argmin Cevae. We
also explored modeling q(y|x) =Mult(h(x)) as a discrete
distribution with h being a neural network. In this case, the
backward pass requires either using REINFORCE or pass-
ing through gradients for the categorical sampler. In our
experiments, we found that these approaches did not work
well, especially when the number of possible values of y
becomes large. We leave this as future work to explore.

The recognition network first computes µ and φ. It is then
combined with the optimal y∗ for each example, to arrive
at the final posterior. The model is trained using a simple
algorithm outlined in Alg. 1. Backpropagation with mini-
batch updates is used, with each minibatch constructed to
be balanced with respect to epitome assignment.

5. Experiments
We present experimental results on two datasets,
MNIST (LeCun et al., 1998) and Toronto Faces Database
(TFD) (Susskind et al., 2010). We use standard splits for
both MNIST and TFD. In our experiments, the encoder
and decoder are fully-connected networks, and we show
results for different depths and number of units of per
layer. ReLU nonlinearities are used, and models are
trained using the Adam update rule (Kingma & Ba, 2014)
for 200 epochs (MNIST) and 250 epochs (TFD), with base
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Algorithm 1 Learning Epitomic VAE

1: θ, φ←Initialize parameters
2: for until convergence of parameters (θ, φ) do
3: Assign each x to its best y∗ = argmin Cevae
4: Randomize and partition data into minibatches,

with each minibatch having proportionate number of
examples ∀ y

5: for k ∈ numbatches do
6: Update model parameters using kth minibatch

consisting of x, y pairs
7: end for
8: end for

learning rate 0.001. We emphasize that in all experiments,
we optimize the correct lower bound for the corresponding
models.

5.1. Qualitative results: Reconstruction vs. Generation

We first qualitatively illustrate the ability of eVAE to over-
come over-pruning and utilize latent capacity to model
greater variability in data. Fig. 6 compares generation re-
sults for VAE and eVAE for different dimensions D of la-
tent variable z. With D = 2, VAE generates realistic digits
but suffers from lack of diversity. When D is increased to
5, the generation exhibits some greater variability but also
begins to degrade in quality. As D is further increased to
10 and 20, the degradation continues. Contrast this with
eVAE performance on generation: as the dimension D of
z is increased while maintaining epitomes of size K = 2,
eVAE is able to model greater variability in the data. High-
lighted digits in the 20-d eVAE show multiple styles such
as crossed versus un-crossed 7, and pointed, round, thick,
and thin 4s. For both models, reconstruction improves with
increasing D as provided in Appendix Fig. 10.

5.2. Choice of epitome size

We next investigate how the choice of epitome size, K, af-
fects generation performance. We measure sample qual-
ity using the Parzen window estimator (Rifai et al., 2012).
Fig. 7 shows the Parzen log-density for different choices of
epitome size on MNIST, with encoder and decoder consist-
ing of a single deterministic layer of 500 units. Epitomes
are non-overlapping, and the results are grouped by total
dimension D of the latent variable z. For comparison, we
also show the log-density for VAE models with the same
dimension D, and for mixture VAE (mVAE), an ablative
version of eVAE where parameters are not shared. mVAE
can also be seen as a mixture of independent VAEs trained
in the same manner as eVAE. The number of determinis-
tic units in each mVAE component is computed so that the
total number of parameters is comparable to eVAE.

As we increase D, the performance of VAE drops signifi-
cantly, due to over-pruning. In fact, the number of active
units for VAE are 8, 22 and 24, corresponding to D values
of 8, 24 and 48, respectively. In contrast, eVAE perfor-
mance increases as we increase D, with an epitome size
K that is significantly smaller than D. This confirms the
advantage of using eVAE to ensure good generation per-
formance. Table 1 provides more comparisons. eVAE also
performs comparably or better than mVAE at all epitome
sizes. An explanation is that due to the parameter shar-
ing in eVAE, each epitome benefits from general features
learned across the training set.

5.3. Increasing complexity of encoder and decoder

Here we investigate the impact of encoder and decoder ar-
chitectures with respect to over-pruning and generation per-
formance. We vary model complexity through number of
layers L of deterministic hidden units, and number of hid-
den units H in each deterministic layer. Table 1 shows
the Parzen log-densities of VAE, mVAE and eVAE models
trained on TFD with different latent dimension D (See Ap-
pendix §9.3 for MNIST). All epitomes are non-overlapping
and of size K = 5. We observe that for VAE, increasing
the number of hidden units H (e.g. from 500 to 1000) for
a fixed network depth L has a negligible effect on the num-
ber of active units and performance. On the other hand,
as the depth of the encoder and decoder L is increased,
the number of active units in VAE decreases though perfor-
mance is still able to improve. This illustrates that increase
in the complexity of the interactions through multiple lay-
ers counteract the perils of the over-pruning. However, this
comes with the cost of substantial increase in the number
of model parameters to be learned.

In contrast, for any given model configuration, eVAE is
able to avoid the over-pruning effect in the number of ac-
tive units and outperform VAE. Table 1 also shows results
for mVAE, the ablative version of eVAE where parameters
are not shared. The number of deterministic units per layer
in each mVAE component is computed to have total num-
ber of parameters comparable to eVAE. These results are in
line with the intuition that parameter sharing is helpful in
more challenging settings when each epitome can also ben-
efit from general features learned across the training set.

5.4. Log-likelihood evaluation

Table 2 shows importance weighted estimates as the mean
of L5000 for VAE and eVAE on MNIST, with different di-
mensions D of latent variable z. All models have 2 de-
terministic hidden layers of 200 units, and are trained in 8
stages with a learning rate of 0.001 · 10−1

7 for 3i epochs,
for each stage i = 0...7, following Burda et al. (2015).
The VAE model has 20 active units at all D, so is not able
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Figure 6: Generations from VAE and eVAE models for different dimensions of latent variable z. In this experiment, we maintain a
simple encoder-decoder architecture with a single layer of 500 deterministic units (samples from best architecture are in Fig. 8). Across
each row are 2-d, 5-d, 10-d, and 20-d models. VAE generation quality degrades as latent dimension increases, and it is unable to
effectively use added capacity to model greater variability. eVAE overcomes the problem by modeling multiple shared subspaces, here
2-d (overlapping) epitomes are maintained as the latent dimension is increased. Learned epitome manifolds from the 20-d model are
shown in Fig. 5. Boxed digits highlight the difference in variability that the VAE vs. eVAE model is able to achieve.
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Figure 7: Epitome size vs. Parzen log-density in nats for differ-
ent values of D on MNIST. For each D, the optimal epitome size
is significantly smaller than D.

to improve performance with increasing D. On the other
hand, eVAE is able to leverage the additional latent capac-
ity to improve on the log-likelihood. Note that these re-
sults can be improved through the tighter lower bound of
IWAE (Burda et al., 2015), but this is an orthogonal con-
sideration since epitomic training can also improve IWAE.

5.5. Sample-based evaluation

In Table 3 we compare the generative performance of eVAE
with other models through their samples. Encoders and de-

H=500 H=1000
L=2 L=3 L=2 L=3

D=15
VAE 2173(15) 2180(15) 2149(15) 2116(15)
mVAE 2276(15) 2314(15) 2298(15) 2343(15)
eVAE 2298(15) 2353(15) 2278(15) 2367(15)

D=25
VAE 2067(25) 2085(25) 2037(25) 2101(25)
mVAE 2287(25) 2306(25) 2332(25) 2351(25)
eVAE 2309(25) 2371(25) 2297(25) 2371(25)

D=50
VAE 1920(50) 2062(29) 1886(50) 2066(30)
mVAE 2253(50) 2327(50) 2280(50) 2358(50)
eVAE 2314(50) 2359(50) 2302(50) 2365(50)

Table 1: Parzen log-densities in nats of VAE, mVAE and eVAE
for increasing model capacity on TFD. Across each row shows
performance as the number of encoder and decoder layers L in-
creases for a fixed number of hidden units H in each layer, and as
H increases. Number of active units are indicated in parentheses.

coders have L = 2 layers of H = 1000 deterministic units.
D = 8 for MNIST, and D = 15 for TFD. VAE, mVAE,
and eVAE refer to the best performing models over all ar-
chitectures from Table 1. For MNIST, the VAE model is
(L,H,D) = (3, 500, 8), mVAE is (3, 1000, 24), and eVAE
is (3, 500, 48). For TFD, the VAE model is (3, 500, 15),
mVAE is (3, 1000, 50), and eVAE is (3, 500, 25). We
observe that eVAE significantly improves over VAE and
is competitive with several state-of-the-art models, no-
tably Adversarial Autoencoders. Samples from eVAE on
MNIST and TFD are shown in Fig. 8.
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D VAE eVAE

50 86.76 86.13
100 86.91 85.73
200 87.09 85.53

Table 2: Importance-weighted log-likelihood estimates as the
mean of L5000 for VAE and eVAE on MNIST, with different di-
mensions D of latent variable z. All models have 2 deterministic
hidden layers of 200 units, and eVAE models use epitomes of size
K = 25. As D increases, VAE is not able to take advantage of
additional units to improve performance, while eVAE is.

(a) (b)

Figure 8: eVAE samples for: (a) MNIST, and (b) TFD.

6. Related Work
A number of applications use variational autoencoders as
a building block. In (Gregor et al., 2015), a generative
model for images is proposed in which the generator of the
VAE is an attention-based recurrent model that is condi-
tioned on the canvas drawn so far. (Eslami et al., 2016)
proposes a VAE-based recurrent generative model that de-
scribes images as formed by sequentially choosing an ob-
ject to draw and adding it to a canvas that is updated over
time. In (Kulkarni et al., 2015), VAEs are used for ren-
dering 3D objects. Conditional variants of VAE are also
used for attribute specific image generation (Yan et al.,
2015) and future frame synthesis (Xue et al., 2016). All
these applications suffer from the problem of model over-
pruning and hence have adopted strategies that takes away
the clean mathematical formulation of VAE. We have dis-
cussed these in § 3. A complementary approach to the prob-
lem of model pruning in VAE was proposed in (Burda et al.,
2015); the idea is to improve the variational bound by us-
ing multiple weighted posterior samples. Epitomic VAE
provides improved latent capacity even when only a single
sample is drawn from the posterior.

Methods to increase the flexibility of posterior inference
are proposed in (Salimans et al., 2015; Rezende & Mo-
hamed, 2016; Kingma et al., 2016). In (Rezende & Mo-
hamed, 2016), posterior approximation is constructed by

Method MNIST(10K) TFD(10K)

DBN (Hinton et al., 2006) 138± 2 1909± 66
Deep CAE (Bengio et al., 2013) 121± 1 2110± 50
Deep GSN (Thibodeau-Laufer et al., 2014) 214± 1 1890± 29
GAN (Goodfellow et al., 2014) 225± 2 2057± 26
GMMN + AE (Li et al., 2015) 282± 2 2204± 20
Adversarial AE (Makhzani et al., 2015) 340± 2 2252± 16

VAE 325± 2 2180± 20
mVAE 338± 2 2358± 20
eVAE 337± 2 2371± 20

Table 3: Parzen log-densities in nats on MNIST and TFD. VAE,
mVAE, and eVAE refer to the best performing models over all
architectures from Table 1.

transforming a simple initial density into a complex one
with a sequence of invertible transformations. (Kingma
et al., 2016) augments the flexibility of the posterior
through autoregression over projections of stochastic latent
variables. However, the problem of over-pruning still per-
sists: for instance, (Kingma et al., 2016) enforces a mini-
mum information constraint to ensure all units are used.

Related is research in unsupervised sparse overcomplete
representations, especially with group sparsity constraints
c.f. (Gregor et al., 2011; Jenatton et al., 2011). In the epito-
mic VAE, we have similar motivations that enable learning
better generative models of data.

7. Conclusion
This paper introduces Epitomic VAE, an extension of varia-
tional autoencoders, to address the problem of model over-
pruning, which has limited the generation capability of
VAEs in high-dimensional spaces. Based on the intuition
that subconcepts can be modeled with fewer dimensions
than the full latent space, epitomic VAE models the latent
space as multiple shared subspaces that have learned spe-
cializations. We show how this model addresses the model
over-pruning problem in a principled manner, and present
qualitative and quantitative analysis of how eVAE enables
increased utilization of the model capacity to model greater
data variability. We believe that modeling the latent space
as multiple structured subspaces is a promising direction of
work, and allows for increased effective capacity that has
potential to be combined with methods for increasing the
flexibility of posterior inference.
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9. Appendix
9.1. Effect of KL weight λ on reconstruction

We visualize VAE reconstructions as the KL term weight
λ is tuned down to keep latent units active. The top half
of each figure are the original digits, and the bottom half
are the corresponding reconstructions. While reconstruc-
tion performance is good, generation is poor (Fig. 2). This
illustrates that VAE learns to model well only regions of the
posterior manifold near training samples, instead of gener-
alizing to model well the full posterior manifold.

(a) λ = 1.0 (b) λ = 0.5 (c) λ = 0.2

Figure 9: Reconstructions for a 50-d VAE with KL weight λ =
1, 0.5, and 0.2. The top half of each figure are the original digits,
and the bottom half are the corresponding reconstructions.

9.2. Effect of increasing latent dimension on
reconstruction

In § 5.1 in the main paper, Fig. 6 shows the effect of in-
creasing latent dimension on generation for VAE and eVAE
models. Here we show the effect of the same factor on re-
construction quality for the models (Fig. 10). The top half
of each figure are the original digits, and the bottom half
are the corresponding reconstructions. As the dimension of
the latent variable z increases from 2-d to 20-d, VAE re-
construction becomes very sharp (the best model), but gen-
eration degrades (Fig. 6). On the other hand, eVAE is able
to achieve both good reconstruction and generation.

9.3. MNIST encoder and decoder complexity

Table 4 shows the effect of increasing complexity in the en-
coder and decoder complexity on MNIST. We vary model
complexity through number of layers L of deterministic
hidden units, and number of hidden units H in each deter-
ministic layer. Parzen log-densities are provided for VAE,
mVAE and eVAE models trained on MNIST with different
latent dimension D. The effect of model complexity on ac-
tive units and performance aligns with that for TFD in the
main paper.
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Figure 10: Reconstructions from VAE and eVAE models for different dimensions of latent variable z. Across each row are 2-d, 5-d,
10-d, and 20-d models. The top half of each figure are the original digits, and the bottom half are the corresponding reconstructions. The
eVAE models multiple shared subspaces by maintaining 2-d (overlapping) epitomes as the latent dimension is increased. In contrast to
VAE, eVAE achieves both good reconstruction and generation.

H = 500 H = 1000
L = 1 L = 2 L = 3 L = 1 L = 2 L = 3

D = 8
VAE 283(8) 292(8) 325(8) 283(8) 290(8) 322(6)
mVAE 300(8) 328(8) 337(8) 309(8) 333(8) 335(8)
eVAE 300(8) 330(8) 337(8) 312(8) 331(8) 334(8)

D = 24
VAE 213(22) 273(11) 305(8) 219(24) 270(12) 311(7)
mVAE 309(24) 330(24) 336(24) 313(24) 333(24) 338(24)
eVAE 311(24) 331(24) 336(24) 317(24) 332(24) 336(24)

D = 48
VAE 213(24) 267(13) 308(8) 224(24) 273(12) 309(8)
mVAE 314(48) 334(48) 336(48) 315(48) 333(48) 337(48)
eVAE 319(48) 334(48) 337(48) 321(48) 334(48) 332(48)

Table 4: Parzen log-densities in nats of VAE, mVAE and eVAE for increasing model parameters, trained on MNIST with different
dimensions D of latent variable z. For mVAE and eVAE models, the maximum over epitomes of size K = 3 and K = 4 is used. All
epitomes are non-overlapping. Across each row shows performance as the number of encoder and decoder layers L increases for a fixed
number of hidden units H in each layer, and as H increases. Number of active units are indicated in parentheses.


