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Abstract
Experience replay is a key technique behind
many recent advances in deep reinforcement
learning. Allowing the agent to learn from earlier
memories can speed up learning and break unde-
sirable temporal correlations. Despite its wide-
spread application, very little is understood about
the properties of experience replay. How does
the amount of memory kept affect learning dy-
namics? Does it help to prioritize certain expe-
riences? In this paper, we address these ques-
tions by formulating a dynamical systems ODE
model of Q-learning with experience replay. We
derive analytic solutions of the ODE for a simple
setting. We show that even in this very simple
setting, the amount of memory kept can substan-
tially affect the agent’s performance—too much
or too little memory both slow down learning.
Moreover, we characterize regimes where pri-
oritized replay harms the agent’s learning. We
show that our analytic solutions have excellent
agreement with experiments. Finally, we propose
a simple algorithm for adaptively changing the
memory buffer size which achieves consistently
good empirical performance.

1. Introduction
In reinforcement learning (RL), the agent observes a stream
of experiences and uses each experience to update its in-
ternal beliefs. For example, an experience could be a tu-
ple of (state, action, reward, new state), and the agent
could use each experience to update its value function via
TD-learning. In standard RL algorithms, an experience is
immediately discarded after it’s used for an update. Re-
cent breakthroughs in RL leveraged an important technique
called experience replay (ER), in which experiences are
stored in a memory buffer of certain size; when the buffer
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is full, oldest memories are discarded. At each step, a ran-
dom batch of experiences are sampled from the buffer to
update agent’s parameters. The intuition is that experience
replay breaks the temporal correlations and increases both
data usage and computation efficiency (Lin, 1992).

Combined with deep learning, experience replay has en-
abled impressive performances in AlphaGo (Silver et al.,
2016), Atari games (Mnih et al., 2015), etc. Despite the ap-
parent importance of having a memory buffer and its pop-
ularity in deep RL, relatively little is understood about how
basic characteristics of the buffer, such as its size, affect the
learning dynamic and performance of the agent. In prac-
tice, a memory buffer size is determined by heuristics and
then is fixed for the agent.

Prioritized experience replay (pER) is a modification of ER
whereby instead of uniformly choosing experiences from
the buffer to use in update, the agent is more likely to sam-
ple experiences that are “surprising” (Moore & Atkeson,
1993)(Schaul et al., 2015). pER is empirical shown to im-
prove the agent’s performance compared to the regular ER,
but we also lack a good mathematical model of pER.

Contributions. In this paper, we perform a first rigor-
ous study of how the size of the memory buffer affects the
agent’s learning behavior. We develop an ODE model of
experience replay and prioritized replay. In a simple set-
ting, we derive analytic solutions characterizing the agent’s
learning dynamics. These solutions directly quantify the
effects of memory buffer size on the learning rate. Sur-
prisingly, even in this simple case with no value function
model mismatch, memory size has a non-monotonic effect
on learning rate. Too much or too little memory both can
slow down learning. Moreover, prioritized replay could
also slow down learning. We confirm these theoretical pre-
dictions with experiments. This motivated us to develop a
simple adaptive experience replay (aER) algorithm to au-
tomatically learn the memory buffer size as the agent is
learning its other parameters. We demonstrate that aER
consistently improves agent’s performance.

Related works. The memory replay technique has been
widely implemented in RL experiments currently and is
shown to have a good performance for different algorithms
such as actor-critic RL algorithms (Wawrzyński, 2009),
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deep Q-Network (DQN) algorithms (Mnih et al., 2013;
2015), and double Q-learning algorithms (Van Hasselt
et al., 2016). To further make good use of experience, pri-
oritized methods are proposed for RL algorithms (Moore
& Atkeson, 1993; Peng & Williams, 1993). The main idea
of prioritization is to sample transitions that lead to larger
value change in RL more frequently. The probability of
selecting an experience is determined by the relative mag-
nitude of the temporal difference error (TD-error). This has
been reported to be effective in many experiments (Moore
& Atkeson, 1993; Van Seijen & Sutton, 2013; Schaul et al.,
2015). Measures other than TD-error are also in literature
to weight experience; examples include rewards (Tessler
et al., 2016) and the transition property (Peng et al., 2016).

The performance of RL with experience replay is similar
to the batch RL but in an incremental way (Lagoudakis &
Parr, 2003; Kalyanakrishnan & Stone, 2007; Ernst et al.,
2005). Another approach to reuse data in RL is called
model-learning or Dyna architecture, which builds a model
to simulate and generate new data (Sutton, 1990; Sutton
et al., 2008). This method, however, induces both extra
computation cost and modeling error for the data.

2. A Dynamical System Model of Experience
Replay

In an RL task, an agent takes actions a, observes states x
and receives rewards r in sequence during its interaction
with the environment. The goal is to learn a strategy which
leads to best possible reward. A standard learning frame-
work for the agent is to use the action-value function to
learn optimal behavior and perform action selection. The
optimal action-value Q(x, a) is defined as the maximum
expected return when the agent starts from state x and takes
first action a. It satisfies

Q(x, a) = E

[
K∑
i=0

γir(xi, ai)

∣∣∣∣∣x0 = x, a0 = a

]
= r(x, a) + γ

∑
y∈X

P (x, a, y) sup
a′∈A

Q(y, a′),

(1)

where r(x, a) is the reward function, γ (0 ⩽ γ < 1) de-
notes the discount factor, and P (x, a, y) is the state transi-
tion probability kernel, defined as the probability of moving
from state x to state y under action a.

In practice, the state space is usually large and the func-
tion approximation is adopted to estimate the action-value
function Q(x, a; θ); deep Q-Network (DQN) is an example
of this approach. At learning step t, the commonly-used

TD-learning method updates the weight θ according to

θ(t+ 1) =θ(t) + α(t)

[
r(t′) + γ ·max

a′∈A
Q[x(t′ + 1), a′; θ(t)]

−Q

[
x(t′), a(t′); θ(t)

]]
×∇θQ[x(t′), a(t′); θ(t)],

(2)
where α(t) is the step size. Here the data collected at learn-
ing step t′ is utilized to do the TD update. For standard
RL algorithms, only the most recent transition is visited
and t′ = t, while for the ER approach, experience data are
reused and t′ < t.

Algorithm 1 Reinforcement Learning with Experience Re-
play

1: Input: memory size N, minibatch size m, step size α,
discount factor γ, total steps T , initial weights θ0, up-
date policy πθ

2: Initialize replay memory BUFFER with capacity N
3: Observe initial state x0

4: for t = 1 to T do
5: Take action at ∼ πθ(xt)
6: Observe rt and xt+1

7: Store transition (xt, at, rt, xt+1) in memory
BUFFER

8: for j = 1 to m do
9: Sample a transition (xi, ai, ri, xi+1) randomly

from BUFFER
10: Compute TD-error

δi = ri + γmaxa Q(xi+1, a; θ)−Q(xi, ai; θ)
11: Update weights θ = θ + αδi∇θQ(xi, ai; θ)
12: end for
13: end for

The effect of the memory buffer can not be extracted from
the ER algorithm itself, and the hidden mechanism is hard
to perceive only with experiments in a black box. Thus
we derive an ODE model to simulate the learning process.
General results are obtained numerically and even analyt-
ically, confirmed as good matches with experiments. This
analytic approach enables us to systematically analyze how
the replay memory affects the learning process and what is
the principle behind it.

The ODE model corresponds to a continuous interpolation
of the discrete learning step t (t = 0, 1, 2, ...). This contin-
uous approximation works well when the step size α is not
too large, i.e., there is no dramatical change for the weights
within a few steps. This criterion is often met in real ex-
periments. More details of the ODE derivation is in the
Appendix.

Under the continuous approximation, the dynamic equation
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for the weights is

dθ(t)

dt
= α(t)∇θQ[x(t′), a(t′); θ(t)]

[
−Q[x(t′), a(t′); θ(t)]

+ r(t′) + γ ·max
a′∈A

Q[x(t′ + 1), a′; θ(t)]

]
,

(3)

The agent’s state evolution can also be estimated as

dx(t)

dt
=

∫
X

P [x(t), a(t), y] ydy (4)

Here the action a(t) is selected according to a policy π

a(t) = π[x(t)] (5)

Together with Eq. (4), the state evolving trajectory can be
depicted. For instance, with an ϵ−greedy policy, the state
movement obeys

dx(t)

dt
=

∫
X

ydy

[
ϵ
∫
A
P [x(t), a, y] da∫

A
da

+ (1− ϵ)P [x(t), argmax
a∈A

Q[x(t), a; θ(t)]), y]

]
(6)

In ER, recent transitions are stored in a replay memory with
the capacity N , and a minibatch of data is randomly cho-
sen for TD-learning. The parameter dynamics under expe-
rience replay is

dθ(t)

dt
=

mα(t)

n(t)

∫ t

t−n(t)

dt′∇θQ[x(t′), a(t′); θ(t)]

[
r(t′)

+ γ ·max
a∈A

Q[x(t′ + 1), a; θ(t)]−Q[x(t′), a(t′); θ(t)]

]
(7)

where m is the minibatch size and n(t) ⩽ N is the memory
size. Eq. (7) can be viewed as giving the expected gradient
value of the parameter updates at each time step.

Now we are able to analyze the learning process, more
specifically, the weights θ(t) and state x(t) as a function
of learning step, based on Eq. (4) and Eq. (7). No exper-
iment is needed and the influence of the memory buffer or
other parameters can be analyzed explicitly from the ana-
lytical solutions. Our theoretical model is further validated
by experiments based on ER algorithms.

Prioritized replay (pER) proposes to speed up the learning
process by sampling the experience transitions according
to a non-uniform probability distribution. One commonly
used model is to parametrize the probability for selecting
transition i as

P (i) =
|δi|β∑
j |δj |β

, (8)

where β is a constant exponent and δi = ri +
γmaxa Q(si+1, a; θ) − Q(si, ai; θ) is the TD-error. The
only difference between ER and pER is in how to sample
experiences.

Taking β = 2 as an instance, the dynamic equation for
weights under pER is given by

dθ(t)

dt
=
mα(t)

∫ t

t−n
δ3(t′)∇θQ[x(t′), a(t′); θ(t)]dt′∫ t

t−n
δ2(t′)dt′

(9)
where δ(t′) = r(t′) + γ · maxa∈A Q[x(t′ + 1), a; θ(t)] −
Q[x(t′), a(t′); θ(t)].

3. Analysis of a Simple Example
Starting from a toy game we call LineSearch, we analyti-
cally solve the ODEs (7) and (9) to get the learning dynam-
ics and quantify the effects of memory. We further char-
acterize settings when pER helps or hinders learning tasks
compared to ER. Finally, we show that our theoretical pre-
dictions have excellent agreement with experiments.

Model setup. We first define a simple game LineSearch,
for which the space of agent state x is one dimensional,
the reward function is linear r(x) = β1x + β2, and the
action is binary a ∈ {v,−v}, where v is a constant. In a
transition, the next state is determined by adding the action
value to the current state, i.e., x(t + 1) = x(t) + a(t).
When the discount factor γ is set as 0 (non-zero γ setting
gives similar agent’s behavior and will be addressed later),
the real action-value function is

Qreal(x, a) = r(x+ a)

= β1 · (x+ a) + β2

(10)

When there is no model mismatch, the action-value func-
tion of the agent is

Qagent(x, a; θ) = θ1 · (x+ a) + θ2, (11)

At t = 0, θ1 and θ2 are randomly initialized. As the agent
performs TD update, we are interested in how quickly the
θ’s approach the true β’s. A natural evaluation metric is
∆θ1 and ∆θ2 defined as

∆θ1 = θ1 − β1 and ∆θ2 = θ2 − β2 (12)

The agent learns well if ∆θ1 and ∆θ2 approach 0, and per-
forms badly when ∆θ1 or ∆θ2 is large. Under a greedy
policy, the evolution of the agent’s state is

dx(t)

dt
=

θ1
|θ1|

v, (13)



The Effects of Memory Replay in Reinforcement Learning

(a) ER. (b) pER. (c) M vs. memory size for ER.
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Figure 1. (a,b) Learning curves for two metrics ∆θ1 = θ1 − β1 and ∆θ2 = θ2 − β2, where θ1(2) and β1(2) are the weights of the
agent and the real weights, respectively. The scattered blue dots and orange squares represent the experimental results for ∆θ1 and ∆θ2,
using (a) ER algorithm and (b) pER algorithm. The blue and orange curves are the numerical solutions for ∆θ1 and ∆θ2 based on our
theoretical model. (c) Dependence of final absolute metric sum M = |∆θ1(t = 1000)|+ |∆θ2(t = 1000)| on memory size for different
minibatch sizes. Note that smaller M stands for better performance. Here we use the original setting when the discount factor γ = 0; m
indicate batch size. (d,f) Contour plot of measure M as a function of memory size and minibatch size, with the discount factor (d) γ = 0
and (f) γ = 0.5. The stars denote the optimal memory sizes given minibatch values. The plots in (c) corresponds to the situations in (d)
when the minibatch size is 5, 10, and 40. (e) The red (blue) region stands for the situations when pER (ER) works better. The rest white
region is the situations when the two settings behave similarly. More precisely, the absolute difference of M for the ER and pER is less
than 1.5× 10−3 in the white area. Here (c-f) are plotted based on theory predictions and also fit experiments well, similar to (a,b).

With the initial state denoted as x0, the evolution of the two
metrics is derived from Eqs. (7)-(13) as

d∆θ1(t)

dt
= −(b10+b11t+b12t

2)∆θ1(t)−(b20+b21t)∆θ2(t)

(14)

d∆θ2(t)

dt
= −(b20 + b21t)∆θ1(t)− b22∆θ2(t), (15)

where b10 = mα(n2v2/3+x2
0−nvx0), b11 = mα(2vx0−

nv2), b11 = mαv2, b20 = mα(x0 − nv/2), b21 = mαv,
and b22 = mα. Here our discussion is set in the θ1 > 0
region, similar study could be carried out when θ1 < 0.
Throughout this section, we choose the initial state x0 =
−5, the action amplitude v = 0.01, and the initial metrics
∆θ01 = −0.1 and ∆θ02 = 0.5.

The learning process in theory can then be calculated based
on the dynamic equations of the metrics, i.e., Eq. (14) and
Eq. (15). It should be noted that the weights θ are obtained

at the same time as θ1 = ∆θ1+β1 and θ2 = ∆θ2+β2. The
detailed analytical solution and discussion for the ODEs
Eq. (14) and Eq. (15) are given in Appendix.

The theoretical learning curves for both RL and pRL set-
tings are depicted in Fig. 1a and Fig. 1b, with the mini-
batch size m being 5 and the step size α being 0.01. The
two metrics ∆θ1 and ∆θ2 are represented by the solid blue
and orange curve, respectively.

To demonstrate the validity of our theoretical solution, we
also performed experiments on LineSearch following ER
and pER algorithms. For illustration, we plot the experi-
mental results in Fig. 1a and Fig. 1b, where the blue dots
stand for ∆θ1 and the orange square denotes ∆θ2. Our
theoretical prediction has excellent agreement with experi-
ment results.

Effects of memory size. By solving the ODEs, we found
that the memory setting has a non-monotonic effect on the
RL performance. We are able to extract the mechanism
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behind this phenomenon from the analytic expressions.

With θ2 being fixed as the real value θ2 ≡ β2, the metric
∆θ1(t) is solved analytically

∆θ1(t) =∆θ01e
−mα

[
v2

3 t3+
v(2x0−Nv)

2 t2
]

· e−mα
[(

x2
0−Nvx0+

N2v2

3

)
t− 1

18N
2v(Nv−9x0)

]
,

(16)
The metric converges exponentially to 0, but the rate
of convergence (the exponent) has non-monotonic depen-
dence on the memory size N .

In contrast, when θ1 is fixed to the correct value, θ1 ≡ β1,
the metric ∆θ2(t) evolves according to

∆θ2(t) = ∆θ02e
−mαt (17)

In this case, the choice of memory size has no effect on the
learning behavior. Detailed explanation and analysis are in
Appendix.

Now we turn to a more general situation when the up-
dates of the two weights are coupled together. To exam-
ine the performance, we define a measure M = |∆θ1(t =
1000)|+ |∆θ2(t = 1000)|, i.e., the sum of the two metrics
absolute values at the learning step 1000, the end of the
game. The smaller the measure M is, the better the agent
learns. Fig. 1d plots the dependence of M on the mem-
ory size N and the minibatch size m, with the step size
α = 10−3.

The learning performance is affected non-monotonically
by the memory size for m < 20, while a monotonic relation
is observed for m > 20, as shown in Fig. 1d. For example,
an optimal memory size around 250 exists for m = 10, de-
noted by the red curve in Fig. 1c. In contrast, the measure
M experiences a monotonic decrease with the growth of
memory size for m = 40, plotted by the blue curve in Fig.
1c.

The influence of the memory setting in RL arises from the
trade-off between the overshooting and the weight update.
Here the term overshooting describes the phenomenon
when some of the weights are updated in the wrong di-
rection. For example, in Fig. 1, θ1 actually moves further
away from β1 during times 200 to 500; θ2 also overshoots
at T = 600 and incurs negative bias. We first address the
settings with small minibatches. When the memory size is
also small, the learning process is more likely to overshoot
because of the limited memory capacity. When the replay
memory is enlarged, the overshooting effect is mitigated.
With the increase of the memory size, the averaged weight
update first becomes slowly then slightly accelerates. The
balance between these two contributions leads to the non-
monotonic nature. When m is large, there is still a trade-off
between overshooting and increasing weight update. How-
ever, the latter can not counteract the former because of the

quick convergence induced by the large TD update. Ana-
lytical expressions and numerical results are combined for
illustrations in Appendix.

Performance of prioritized replay. We further compare
pER and ER, and discuss how the memory buffer affects
pER based on our theoretical model. Fig. 1b plots the
learning curve for pER, which exhibits a similar property
as for ER in Fig. 1a . We compare the performance of RL
and pRL algorithms in Fig. 1e, where blue (red) regions
stand for cases when ER (pER) is better, and white areas
represent situations when the two algorithms perform sim-
ilarly. It is shown that pER performs relatively worse when
the memory size is small, particularly when the minibatch
size is not large. This is also attributed to the trade-off be-
tween the overshooting and quick weight update. For small
memory size, the overshooting effect is more serious under
the prioritized sampling, while for a large memory, the pri-
oritized agents update the weight quicker which leads to a
faster convergence. Demonstrations are given in Appendix.

Nonzero discount factor. The discount factor is set as 0
in the previous subsections for simplicity. Here we show
that the learning dynamics with γ > 0 is qualitatively sim-
ilar to the case when γ = 0 in the LineSearch game. With
a nonzero discount factor γ, i.e., considering the long-term
effect, the real action-value function under the greedy pol-
icy is

Qreal(x, a) = E
[ K∑

i=0

γi[β1(x0 + a0 + i|β1|v)

+ β2]

∣∣∣∣∣x0 = x, a0 = a

]
=

1− γK+1

1− γ
[β1(x+ a) + β2]

+ v|β1|
[
γ − γK+1

(1− γ)2
− KγK+1

1− γ

]
≈ β1

1− γ
(x+ a) +

β2

1− γ
+

γv|β1|
(1− γ)2

,

(18)

where K stands for the total training steps afterwards be-
fore the game ends. The approximation in Eq. (18) is valid
for large K and γ < 1. For instance, with the discount fac-
tor γ = 0.9, the contribution of the term γK after 100 steps
is γ100 = 0.00003.

When there is no model mismatch, the action-value func-
tion of the agent is

Qagent(x, a; θ) = θ1 · (x+ a) + θ2, (19)

Then the evolution of the two weights are derived together
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with Eqs. (7)-(13) as

dθ1(t)

dt
=− (b10 + b11t+ b12t

2) [(1− γ)θ1(t)− β1]

− (b20 + b21t)[(1− γ)θ2(t)− γv|θ1(t)| − β2]
(20)

dθ2(t)

dt
=− (b20 + b21t) [(1− γ)θ1(t)− β1]

− b22 [(1− γ)θ2(t)− γv|θ1(t)| − β2] ,
(21)

where b10 = mα(n2v2/3+x2
0−nvx0), b11 = mα(2vx0−

nv2), b11 = mαv2, b20 = mα(x0 − nv/2), b21 = mαv,
and b22 = mα. The learning curve is attached in Appendix.

We find that the ODEs for γ > 0 have similar form as γ =
0. Correspondingly, the results obey similar principles, as
shown in Fig. 1f. Here the step size is α = 10−3, the real
weights θr1 and θr2 are 0.1 and 0.5, and the initial weights
θ01 and θ02 are 0 and 1.

4. Adaptive Memory Size Algorithm
The analysis from the previous section motivated us to de-
velop a new algorithm that allows the agent to adaptively
adjust the memory size while it is learning other parame-
ters.

Algorithm description. The memory size is adaptively
changed according to the TD error magnitude change of
the oldest transitions, characterized by |δold|′−|δold|. Here
|δold| and |δold|′ are defined as the sum of the absolute TD
errors of the old nold transitions in memory, where nold

is a hyperparameter which denotes the number of old data
we choose to examine. |δold| is first calculated. After k
steps, we derive |δold|′ and compare it with |δold|. More
specifically, every k steps, if the change of absolute TD
error magnitude sum for the old transitions decreases, i.e.,
|δold|′ < |δold|, the memory shrinks, otherwise increases,
as given in Algorithm 1, denotes as aER.

The absolute TD error updates for old transitions |δold|′ −
|δold| are used as a metric for the balance between the over-
shooting effect and quick weight update. After k steps
of weight updates, if the TD error magnitude for the old
transitions goes up, which means the old data violate the
Bellman equation even worse, the old data should be kept
longer for adequate updates in the future. If |δold|′ < |δold|,
the oldest transitions are abandoned to mitigate possible
overshooting effect.

Performance on LineSearch and CartPole. We first an-
alyze how aER works for the LineSearch game. With the
minibatch size m = 10 and the step size α = 10−3, the
agent adaptively adjusts its memory capacity from 100 as

(a) Learning curve for the LineSearch game,
when the memory is learned adaptively from 100
(solid) vs. fixed at 100 (dashed).

(b) Adaptive memory for the LineSearch game
starting from memory size of 100.

(c) Learning curve for CartPole, when the mem-
ory is fixed as 100 and 2000, and adaptively
learned starting from 100.

(d) Adaptive memory for CartPole starting from
memory size of 100.

Figure 2. Learning curve and adaptive memory for LineSearch
and CartPole.
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Algorithm 2 Adaptive Memory Size Reinforcement Learn-
ing with Experience Replay

1: Input: initial memory size N0, minibatch size m, step
size α, discount factor γ, total steps T , initial weights
θ0, update policy πθ, number of checked oldest transi-
tions nold and memory adjustment internal k.

2: Initialize replay memory BUFFER with capacity N =
N0 and set |δold| = 0

3: Observe initial state x0

4: for t = 1 to T do
5: Take actions, observe, store transitions and do TD

updates as in ER algorithm
6: if mod(t, k) = 0 and memory BUFFER is full then
7: Compute |δold|′ =

∑t−N+nold

i=t−N+1 |ri +
γmaxa Q(xi+1, a; θ)−Q(xi, ai; θ)|

8: if |δold|′ > |δold| or N = k then
9: Enlarge the memory N = N + k

10: |δold| = |δold|′
11: else
12: Shrink the memory N = N − k, delete the

oldest k transitions in BUFFER
13: Compute |δold| =

∑t−N+k+nold

i=t−N+k+1 |ri +
γmaxa Q(xi+1, a; θ)−Q(xi, ai; θ)|

14: end if
15: end if
16: end for

depicted in Fig. 2b. Compared to the setting with fixed
memory size as 100, the agent updates weights more effec-
tively and the overshooting effect is mitigated, indicated by
Fig. 2a.

Next we evaluated the algorithm on CartPole, a standard
RL benchmark that we downloaded from OpenAI Gym.
The game starts with the pole being upright and the cart
locating at the middle of two boundaries. The agent fails
and gets a reward −1 if the pole falls more than 40 de-
grees or the cart hits the walls. The agent earns a reward
of 1 if it survives to time 200 in one episode. We used
DQN with a one-layer fully connected neural network for
the value function approximation. aER achieved good per-
formance in CartPole. Here we randomly initialize the
weights and set the minibatch size m = 50, number of
checked old transitions nold = m = 50, memory adjust-
ment internal k = 20, discount factor γ = 0.9 and step
size α = 2× 10−5. Starting with an initial memory size of
100, the agent speeds up its learning from adaptive adjust-
ments of the memory size, as shown in Fig. 2c and Fig. 2d
where each curve is averaged for 100 new games. At the
start of the training, the agent learns to increase the mem-
ory size for a quicker weight update. In the last 50 episodes,
the learning process is accelerated with a slowly shrinking
memory, compared with the fixed memory size cases. Al-

though an ultra-large memory like 100000 could do a little
bit better at last, the result of adaptive algorithm is already
satisfying and also memory-saving with the maximum ca-
pacity of around 300.

Evaluation Little extra computation cost is needed to
carry out the aER. Taking the cartpole game defined above
for example, only every 20 steps, we need to compute one
or two forward passes of neural network without backpro-
pogation. The examined batch is in the same size as the
sampling minibatch for TD update. This rough version of
aER algorithm has a tendency to shrink the memory, but
already shows good performance in experiments. The goal
of the TD learning process is to diminish the TD error am-
plitude for all data, so the updated |δold|′ is more likely to
be less than |δold| in average sense. One possible solution
is to change the criterion for shrinking the memory buffer
to be |δold|′ < |δold| − ϵ, where ϵ could be a predefined
constant, or learned online such as from the averaged TD
error amplitude change through the whole dataset and the
previous |δold| − |δold|′ value.

5. Discussion
Our analytic solutions, confirmed by experiments, demon-
strate that the size of the memory buffer can substantially
affect the agent’s learning dynamics even in very simple
settings. Perhaps surprisingly, the memory size effect is
non-monotonic even when there is no model mismatch be-
tween the true value function and the agent’s value func-
tion. Too little or too much memory can both slow down
the speed of agent’s learning of the correct value function.
We developed a simple adaptive memory algorithm which
evaluates the usefulness of the older memories and learns to
automatically adjust the buffer size. It shows promising im-
provements over the current static memory size algorithms.
There are many interesting directions to extend this adap-
tive approach. For example, one could try to adaptively
learn a prioritization scheme which improves upon the pri-
oritized replay. This paper focused on simple settings in
order to derive clean, conceptual insights. Systematic eval-
uation of the effects of memory buffer on large scale RL
projects would also be of great interest.
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A. Analytic solutions of the ODEs of the
learning dynamics

Utilizing our model, we are able to analyze the learning
properties and the influence of the replay memory system-
atically. How to choose replay memory settings, such as
memory size and minibatch size, are further discussed.

A.1. Solutions for 1D weights

In this subsection, we start with the simplest case when
the weight are one-dimensional to get some basic intuition
and to prepare for more complexed cases which will be ad-
dressed later.

Fix the intercept θ2 We first consider the setting when
the intercept θ2 in Eq. (11) is fixed. In this case, the ap-
proximated action-value function of the agent Qagent is

Qagent(x, a; θ) = θ · (x+ a) + β2 (22)

Note that the real action-value function is Qreal(x, a; θ) =
β1 · (x+a)+β2. The weight is initialized to be θ0, and the
initial metric is ∆θ0 = θ0 − β1 correspondingly.

The metric as a function of learning step ∆θ(t) is calcu-
lated analytically as

∆θ(t) = ∆θ0e−k(t), (23)

where the exponent k(t) is given by

k(t) = mα[
v2

9
t3 +

x0v

2
t2 + x2

0t] (t ⩽ N) (24a)

k(t) = mα

[
v2

3
t3 +

v(2x0 −Nv)

2
t2 − 1

18
N2v (Nv − 9x0)

+

(
x2
0 −Nvx0 +

N2v2

3

)
t

]
(t > N)

(24b)
The learning process consists of two parts. In the begin-
ning, The exponent k gradually grows from 0, described by
Eq. (24a). After the replay memory gets full, the memory
buffer becomes a sliding window and the exponent evolves
according to Eq. (24b). The metric ∆θ approaches the
desired value 0 exponentially and the exponent is a cubic
function of the learning step t.

In Fig. 3, we present the learning curves of the exponent k
and the metric ∆θ for different memory sizes N . Here the
minibatch size m is 5 and the step size α is 2×10−5. In the
whole learning process, the exponent grows monotonically
and the metric ∆θ decreases monotonically to 0, indicated
by Eq. (23).

We further study how the replay memory setting affects the
learning performance. In practice, the total training time

(a) Dependence of exponent k on learning step t.

(b) Metric ∆θ/∆θ0 vs. learning step t.

Figure 3. Learning curve for the exponents k and the metric
∆θ/∆θ0 = e−k. The memory sizes N are 1, 50, 500, 1000.

for an agent to learn a certain amount of knowledge is used
to represent its performance. Here the total steps required
to reach k = K is chosen to stand for the learning ability of
the agent. The value K is our desired exponent value. For
instance, if K = 3, the agent is thought to learn well when
its metric is ∆θ = θ − β1 = 0.05∆θ0. Note that an agent
is viewed as a better learner if it uses less training time, i.e.,
less learning steps, to achieve k = K.

First, it is always more beneficial to have a larger minibatch
in this case. On the one hand, the exponent k is strictly pro-
portional to the minibatch size m. On the other hand, the
exponent monotonically increases during the whole learn-
ing process. Thus, the larger minibatch an agent has, the
faster it learns. It should be mentioned that in real experi-
ments, the minibatch cannot be too large, cause one gradi-
ent step size is required to be small to guarantee the validity
of TD-error update, and the gradient step size is propor-
tional to the minibatch size in the defined ER algorithm.

Second, the learning ability of the agent, represented by
the total steps an agent takes from the initial exponent to
k = K, has nonmonotonic dependence on the memory
size, as plotted by Fig. 4a. As the learning proceeds, the
weight update from the currently collected transition, i.e.,
αδi∆θQ(xi, ai; θ), first decreases, and then grows after the
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(a) Steps required to target exponent k = K vs. mem-
ory size.

(b) Optimal meomroy size vs. target exponent

Figure 4. How memory size affects performance in fixed intercept
case.

moment when the state increases to be above 0. In the same
time, for any transition in this setting, the weight update is
always in the correct direction towards the real value β1.
That is, a larger weight update is always preferable.

In the beginning of the game, older transitions in the mem-
ory replay contribute more to the weight update and a larger
memory is more desirable. As soon as the agent reaches
the region where the weight update from its current state is
large enough, compared to the average of its past experi-
ence, only updating the current transition becomes a good
strategy. As illustrated by the blue curve in Fig. 3, for
memory size N = 1, it grows most slowly at start, the ve-
locity of its exponent increases gradually surpasses other
conditions with different memory size, and grows most
rapidly among all possible choices of N after learning step
t = 1000. Thus, the optimal memory size increases with
the growth of the target exponent K, abruptly falls to 1 at
a certain K,and remains to be 1 thereafter, as demonstrated
in Fig. 4b.

The prioritized method always outperforms the uniformly
selection approach in the fixed-intercept case. It is due to
the fact that, a larger absolute TD-error corresponds to a

larger derivative of the action-value function with respect
to the weight, and furthermore it corresponds to a larger
weight update. As mentioned above, a larger weight update
is always beneficial. In the prioritized setting, transitions
with larger TD-error value are more frequently selected,
leading to a faster convergence to real weight value. It can
also be demonstrated analytically as the difference between
the exponent for the prioritized setting kpri(t) and for the
original one k(t) is written as

kpri(t)− k(t) = c(t)v3t3
[(

2vt+
15

4
x0

)2

+
15

16
x2
0

]
(t ⩽ N)

(25)

kpri(t)− k(t) = c′(t)v3N3

[(
2vt− 15

4
(vt+ x0)

)2

+
15

16
(vt+ x0)

2

]
(t > N),

(26)
where c(t) > 0 and c′(t) > 0. It can be easily observed that
kpri(t) − k(t) > 0 at any learning step t, thus prioritized
learning converges more quickly than the original setting,
as illustrated by Fig. 5.

Figure 5. The learning curve for the metric ∆θ under conditions
with prioritized method (orange curve) and without prioritized
method (blue curve) in fixed intercept case. Here the memory
size is 500, batch size is 5 for illustration purpose.

Fix the slope θ1 Another possible one-dimensional
action-value function weight is to fix the slope θ1 in Eq.
(11), which means

Qagent(x, a; θ) = β1 · (x+ a) + θ (27)

With the initial weight θ0, the initial metric is given by
∆θ0 = θ0 − β2, considering the real action-value function
is Qreal(x, a; θ) = β1 · (x+ a) + β2.
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The metric ∆θ(t) = θ(t)− β2 is obtained analytically as

∆θ(t) = ∆θ0e−mαt (28)

Equation (28) suggests that the metric also decreases to the
target value 0 exponentially, but the exponent is propor-
tional to the learning step t. In strong contrast, the ex-
ponent is third-order polynomial with respect to t in the
fixed-intercept case. Thus, the learning is generally slower
for this fixed-slope case than the fixed-intercept case. For
example, when the minibatch size is 5 and the step size is
5×10−5, it takes the fixed-slope agent 30000 learning steps
to achieve ∆θ/∆θ0 = 0.05, while the fixed-intercept agent
only needs less than 1200 steps to learn.

The learning process and results are totally independent of
the initial state, velocity of state changing, and most im-
portantly, the memory size. The learning dynamics is fully
described by the step size, the minibatch size and the ini-
tial weights. This is due to the fact that all transitions are
identically useful in fixed-slope situation. At any learn-
ing step, it can be easily proved that the TD-error and the
weight update are the same for all transition with all possi-
ble state values. The selection of data for update no longer
matters, so different replay memory settings have same per-
formance.

Similarly, the prioritized method has the same learning re-
sults as the original setting, cause all transitions are equal in
the sense of weight update. This can be confirmed by the-
oretical calculation, which yields that the exponent for the
prioritized setting kpri(t) and the original one k(t) satisfy

kpri(t) ≡ k(t). (29)

A.2. Solution for the full model

From Eq. (14) and Eq. (15), the dynamic equation for the
metric ∆θ1(t) is given by

0 =
d2∆θ1(t)

dt2
+

c10 + c11t+ c12t
2 + c13t

3

d0 + d1t

d∆θ1(t)

dt

+
c00 + c01t+ c02t

2 + c03t
3

d0 + d1t
∆θ1(t) (t ⩽ N)

(30a)

∆θ1(t = 0) = θ01 − β1 (30b)

d∆θ1(t = 0)

dt
= −mαx2

0(θ
0
1 − β1)−mαx0(θ

0
2 − β2)

(30c)

0 =
d2∆θ1(t)

dt2
+

g10 + g11t+ g12t
2 + g13t

3

h0 + h1t

d∆θ1(t)

dt

+
g00 + g01t+ g02t

2

h0 + h1t
∆θ1(t) (t ⩾ N)

(31a)

∆θ1(t = N+) = ∆θ1(t = N−) (31b)

d∆θ1(t = N+)

dt
=

d∆θ1(t = N−)

dt
(31c)

After ∆θ1(t) is obtained, another metric ∆θ2(t) can be de-
rived based on Eq. (14). Here the parameters are

c00 = 12αmvx2
0 (32a)

c01 = 6αmv2x0 (32b)

c02 = 2α2m2v2x0 + 4αmv3 (32c)

c03 = α2m2v3 (32d)

c10 = 24αmx3
0 + 24αmx0 − 12v (32e)

c11 = 12αmv + 36αmvx2
0 (32f)

c12 = 20αmv2x0 (32g)

c13 = 4αmv3 (32h)

d0 = 24x0 (32i)

d1 = 24v (32j)

g00 =αmv

[
N2v2(4− αmN) + 2Nvx0(αmN − 12)

+ 24x2
0

]
(33a)

g01 = 2αmv2 [Nv(αmN − 12) + 24x0] (33b)

g02 = 24αmv3 (33c)
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g10 =4

[
v
(
αmN

(
N2v2 + 3

)
+ 6

)
− αmx0

(
5N2v2 + 6

)
+ 9αmNvx2

0 − 6αmx3
0

]
(33d)

g11 = −4αmv
(
5N2v2 − 18Nvx0 + 18x2

0 + 6
)

(33e)

g12 = 36αmv2 (Nv − 2x0) (33f)

g13 = 24αmv3 (33g)

h0 = 24x0 − 12Nv (33h)

(a) First stage

(b) Last stage

Figure 6. Approximated analytical solutions for two metrics. The
dashed curves are analytical results from (a) Eq. (34) and (b) Eq.
(36). (a) The solid curves represent the numerical solution.

Approximated analytical solutions can be derived. For Fig.
1a, the approximated learning functions in the first and last
stage are plotted in Fig. 6.

In the beginning part, the metrics are estimated as

∆θ1(t) =
∆θ01 +∆θ01x

2
0e

αmt(−x2
0−1) −∆θ02x0

x2
0 + 1

+
∆θ02x0e

αmt(−x2
0−1)

x2
0 + 1

(34a)

∆θ2(t) =
∆θ01x0e

αmt(−x2
0−1) + ∆θ02e

αmt(−x2
0−1)

x2
0 + 1

+
∆θ02x

2
0 −∆θ01x0

x2
0 + 1

(34b)
As illustrated by the dashed curve in Fig. 6a, this estima-
tion fits the real solution well when the learning step is less
than 100.

Equation (34) indicates that the weights changes rapidly to

∆θ1(t) → ∆θ01 −
x0

(
∆θ02 +∆θ01x0

)
x2
0 + 1

(35a)

∆θ2(t) → ∆θ02 −
∆θ02 +∆θ01x0

x2
0 + 1

(35b)

After the swift change, the metrics remain constant for a
short period, as shown in Fig. 6a. Note that the value
changing behavior happens so fast that the values given in
Eq. (35) do not rely on the memory size, policy, minibatch
size and even the step size.

In the last stage of the learning, the metrics are approxi-
mated as

∆θ1(t) = ∆θ11e
− 1

3αmt3v2

(36a)

∆θ2(t) =
32/3∆θ11

3
√
αmv2Γ

(
2
3 ,

1
3mt3v2α

)
3∆θ12v

3v

−
32/3∆θ11Γ

(
2
3

)
3
√
αmv2

3v
,

(36b)
where ∆θ11 and ∆θ12 are estimated values for ∆θ1 and ∆θ2
when the agent enters the last stage. The learning curve
in the last stage is illustrated in Fig. 6b. Here the guess
for ∆θ11 and ∆θ12 can vary a lot. In the rigorous result, we
observe a delayed effect, which is due to the fact that the
agent does not fully enter the last stage in our experiment
time scale and the neglected terms for the derivation of Eq.
(36) also contribute to the result.

From Eq. (36) we observe that the weights finally approach

∆θ1(t) → 0 (37a)

∆θ2(t) →
3∆θ12v − 32/3∆θ11Γ

(
2
3

)
3
√
αmv2

3v
(37b)
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Figure 7. Contour plot of final absolute metric sum M = |∆θ1(t = 1000)| + |∆θ2(t = 1000)| as a function of memory size and
minibatch size for (a) ER and (b) pER algorithms. Smaller final total metric stands for better performance. The stars denote the optimal
memory sizes given minibatch values. (c) The contour plot of the difference of the final absolute metric sum M for the original setting
and the prioritized setting as a function of memory size and minibatch size, i.e., the result of subtracting Fig. 1d by Fig. 7b. The positive
value represents that the prioritized method is useful, while the negative value denotes that the prioritized method is harmful

It should be addressed that the metric ∆θ2 does not con-
verge to 0 because the agent changes the state unidirec-
tionally and the movement finally reaches a balance with
the weight update. Thus, in order to make the metric as
near 0 as possible at last, it is crucial for the agent to have
small value of Eq. (37b) when it enters the final stage of
the learning process.

Here we illustrate in details how the memory setting af-
fects the learning performance from the trade-off between
the overshooting and the weight update. When the mem-
ory size is small, overshooting is more likely to take place
owing to the limited memory size. As depicted by the solid
curves in Fig. 8b when the memory size is 100, the metric
∆θ2 is gradually fitted from positive to negative, while ∆θ1
remains to be positive after the first stage. From Eq. (37b)
we know that, in this case, the absolute value which ∆θ2
approaches is large, confirmed by Fig. 8b. With the growth
of memory size, the overshooting effect is mitigated. In
this case, the weight update is first decelerated and then
slightly accelerates. The optimal memory size is reached
around 250, as depicted by Fig. 8c. When the memory size
continues to increase, the agent suffers little overshooting
issue. The convergence is slower than the optimal one be-
cause of the smaller weight update, as shown in Fig. 8d.

B. Effects of memory size in prioritized replay
Here we analyze the effects of the memory replay on the
prioritized methods. Fig. 7b presents the dependence of the
final absolute metric sum M on memory size and minibatch
size, which exhibits a similar behavior as in the original set-
ting and the causes are also similar. M has a nonmonotonic
dependence on memory given the batch size less than 15,
and decreases monotonically with the increase of memory.
Fig. 7c depicts how the difference of M between the orig-

inal and prioritized settings depend on memory size and
minibatch size. A positive difference value means that the
prioritized setting is better. Fig. 1e is derived from it.

In principle, the pER algorithm is found to perform rela-
tively worse than the ER when both the memory size and
minibatch size is small, as indicated by Fig. 7c. This could
also be explained with the trade-off between the overshoot-
ing and quick weight update, similar to the situation in Fig.
8a. As plotted in Fig. 8b and Fig. 8d, for the memory
size N of 100, the prioritized setting makes the overshoot-
ing even worse; while for N = 1000, the weights are
quickly updated and the prioritized agents converge faster.
It should be noted that there are more complicated situa-
tions in this two-dimensional-weight situation. For ∆θ2,
prioritized scheme always results in a faster weight update,
while for ∆θ1, this does not necessarily hold true accord-
ing to the definition of the weight update. For example, in
Fig. 8c, before the learning step 500, the non-prioritized
case actually learns faster than the prioritized case.

C. Nonzero discount factor
The theoretical model when γ = 0 also fits well with the
experiments’ result, as illustrated in Fig. 1, where the mini-
batch size m is 5, the step size α is 0.01, the discount factor
γ is 0.5, the real weights β1 and β2 are 0.1 and 0.5, and the
initial weights θ01 and θ02 are 0 and 1.
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(a) Final absolute metric sum M vs. memory size for
different minibatch size.

(b) Memory size N = 100, Minibatch size m = 10.

(c) Memory size N = 250, Minibatch size m = 10. (d) Memory size N = 1000, Minibatch size m =
10.

Figure 8. (b-d) Learning curve for the two metrics ∆θ1 and ∆θ2 with or without prioritized methods.

Figure 9. Learning curve for two metrics ∆θ1 = θ1 − θr1 and
∆θ2 = θ2 − θr2 , where θ1(2) and θr1(2) are the weights of the
agent and the real weights, respectively. The scattered blue dots
and orange squares represent the experimental results for ∆θ1 and
∆θ2, based on the ER algorithm. The blue and orange curve are
the theoretical solutions for ∆θ1 and ∆θ2.
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