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Abstract
Many inverse problems are formulated as opti-
mization problems over certain appropriate input
distributions. Recently, there has been a grow-
ing interest in understanding the computational
hardness of these optimization problems, not only
in the worst case, but in an average-complexity
sense under this same input distribution.

In this note, we are interested in studying another
aspect of hardness, related to the ability to learn
how to solve a problem by simply observing a col-
lection of previously solved instances. These are
used to supervise the training of an appropriate
predictive model that parametrizes a broad class
of algorithms, with the hope that the resulting “al-
gorithm” will provide good accuracy-complexity
tradeoffs in the average sense.

We illustrate this setup on the Quadratic Assign-
ment Problem, a fundamental problem in Network
Science. We observe that data-driven models
based on Graph Neural Networks offer intrigu-
ingly good performance, even in regimes where
standard relaxation based techniques appear to
suffer.

1. Introduction
Many tasks, spanning from discrete geometry to statistics,
are defined in terms of computationally hard optimization
problems. Loosely speaking, computational hardness ap-
pears when the algorithms to compute the optimum solution
scale poorly with the problem size, say faster than any poly-
nomial. For instance, in high-dimensional statistics we may
be interested in the task of estimating a given object from
noisy measurements under a certain generative model. In
that case, the notion of hardness contains both a statistical
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aspect, that asks above which signal-to-noise ratios the esti-
mation is possible, and a computational aspect, that restricts
the estimation to be computed in polynomial time. An active
research area in Theoretical Computer Science and Statistics
is to understand the interplay between those statistical and
computational detection thresholds; see [1] and references
therein for an instance of this program in the community
detection problem, or [3; 8; 5] for examples of statistical
inference tradeoffs under computational constraints.

Instead of investigating a designed algorithm for the prob-
lem in question, we consider a data-driven approach to learn
algorithms from solved instances of the problem. In other
words, given a collection (xi, yi)i≤L of problem instances
drawn from a certain distribution, we ask whether one can
learn an algorithm that achieves good accuracy at solving
new instances of the same problem – also being drawn from
the same distribution, and to what extent the resulting algo-
rithm can reach those statistical/computational thresholds.

The general approach is to cast an ensemble of algorithms as
neural networks ŷ = Φ(x; θ) with specific architectures that
encode prior knowledge on the algorithmic class, parame-
terized by θ ∈ RS . The network is trained to minimize the
empirical loss L(θ) = L−1

∑
i `(yi,Φ(xi; θ)), for a given

measure of error `, using stochastic gradient descent. This
leads to yet another notion of learnability hardness, that
measures to what extent the problem can be solved with no
prior knowledge of the specific algorithm to solve it, but
only a vague idea of which operations it should involve.

In this note we focus on a particular NP-hard problem,
the Quadratic Assignment Problem (QAP), and study data-
driven approximations to solve it. Since the problem is
naturally formulated in terms of graphs, a reasonable neural
network model to consider is the so-called Graph Neural
Network (GNN) model [27]. This neural network alternates
between applying linear combinations of local graph opera-
tors – such as the graph adjacency or the graph Laplacian,
and pointwise non-linearities, and has the ability to model
some forms of non-linear message passing and spectral anal-
ysis, as illustrated for instance in the data-driven Commu-
nity Detection methods in the Stochastic Block Model [7].
Existing tractable algorithms for the QAP include spectral
alignment methods [29] and methods based on semidefi-
nite programming relaxations [32; 13]. Our preliminary
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experiments suggest that the GNN approach taken here may
be able to outperform the spectral and SDP counterparts
on certain random graph models, at a lower computational
budget.

We devote special attention to the Travelling Salesman Prob-
lem (TSP), a particularly important instance of the QAP, and
train our model to approximately solve it on small problem
instances, showing promising results. This is a particularly
good problem to investigate in this setting because there
exists a remarkable collection of realistic problem instances
and very effective heuristics to solve them that can be used
to supervise the learning of our algorithms; see Section 4.

The rest of the paper is structured as follows. Section 2
presents the problem set-up and describes existing relax-
ations of the QAP. Section 3 describes the graph neural
network architecture and Section 4 presents our numeri-
cal experiments. Finally, Section 5 describes some open
research directions motivated by our initial findings.

2. Quadratic Assignment Problem
QAP is a classical problem in combinatorial optimization.
For A,B n× n symmetric matrices it can be expressed as

minimize trace(AXBX>), subject to X ∈ Π, (1)
where Π is the set of all permutation matrices of size n× n.
Many combinatorial optimization problems can be formu-
lated in this way. For instance, the network alignment prob-
lem consists on given A and B the adjacency graph of two
networks, to find the best matching between them, i.e.:

minimize ‖AX −XB‖2F , subject to X ∈ Π. (2)
By expanding the square in (2) one can obtain an equivalent
optimization of the form (1). Also note that the value of (2)
is 0 if and only if the graphs A and B are isomorphic.

The traveling salesman problem (TSP) can also be formu-
lated as a QAP. In TSP one is given a weighted graph B
and the question is to find the shortest path that visits every
vertex of B exactly once and returns to the starting vertex.
This problem is equivalent to asking for the best matching
between A, the complement of cycle graph in n nodes, and
B. The minimum bisection problem asks, given a graph B,
to partition it in two equal sized subsets such that the num-
ber of edges across partitions is minimized. This problem
is natural to consider in community detection and can be
expressed as finding the best matching between A, a graph
with two equal sized disconnected cliques, and B.

The quadratic assignment problem is known to be NP-hard
and also hard to approximate [24]. Several methods and
heuristics had been proposed to address the QAP. We refer
the reader to [12] for a recent review of different meth-
ods and numerical comparison. According to the experi-
ments performed in [12] the most accurate algorithm for
recovering the best alignment between two networks in the

distributions of problem instances considered below is a
semidefinite programming relaxation (SDP) first proposed
in [32]. However, such relaxation requires to lift the variable
X to an n2×n2 matrix and solve an SDP that becomes prac-
tically intractable for n > 20. The recent work in [13] has
further relaxed the semidefinite formulation to reduce the
complexity by a factor of n, and proposed an augmented la-
grangian alternative to the SDP which is significantly faster
but not as accurate, and it consists of a convex optimization
algorithm with O(n3) variables.

There are known examples where the SDP is not able
to prove that two non-isomorphic graphs are actually not
isomorphic (i.e. the SDP produces pseudo-solutions that
achieve the same objective value as an isomorphism but that
do not correspond to permutations [22; 30]). Such adverse
example consists on highly regular graphs whose spectrum
have repeated eigenvalues, so-called unfriendly graphs [2].
We find QAP to be a good case study for our investigations
for two reasons. It is a problem that is known to be NP-hard
but for which there are natural statistical models of inputs,
such as models where one of the graphs is a relabelled small
random perturbation of the other, on which the problem is
believed to be tractable. On the other hand, producing algo-
rithms capable of achieving this task for large perturbations
appears to be difficult. It is worth noting that, for statisti-
cal models of this sort, when seen as inverse problems, the
regimes on which the problem of recovering the original
labeling is possible, impossible, or possible but potentially
computationally hard are not fully understood.

3. Graph Neural Networks
The Graph Neural Network, introduced in [27] and further
simplified in [20; 11; 28] is a neural network architecture
based on local operators of a graph G = (V,E), offering a
powerful balance between expressivity and sample complex-
ity; see [6] for a recent survey on models and applications
of deep learning on graphs.

Given an input signal F ∈ RV×d on the vertices
of G, we consider graph intrinsic linear operators
that act locally on this signal: The degree oper-
ator is the linear map D : F 7→ DF where
(DF )i := deg(i) · Fi , D(F ) = diag(A1)F . The
adjacency operator is the map A : F 7→ A(F ) where
(AF )i :=

∑
j∼i Fj , with i ∼ j iff (i, j) ∈ E. Similarly,

2J -th powers of A, AJ = min(1, A2J ) encode 2J -hop
neighborhoods of each node, and allow us to aggregate
local information at different scales, which is useful in
regular graphs. We also include the average operator
(U(F ))i = 1

|V |
∑

j Fj , which allows to broadcast in-
formation globally at each layer, thus giving the GNN
the ability to recover average degrees, or more gener-
ally moments of local graph properties. By denoting
A = {1, D,A,A1 . . . , AJ , U} the generator family, a
GNN layer receives as input a signal x(k) ∈ RV×dk and
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produces x(k+1) ∈ RV×dk+1 as

x
(k+1)
l = ρ

(∑
B∈A

Bx(k)θ
(k)
B,l

)
, l = 1 . . .

dk+1

2
, (3)

x
(k+1)
l =

∑
B∈A

Bx(k)θ
(k)
B,l , l =

dk+1

2
+ 1, . . . dk+1 ,

where Θ = {θ(k)1 , . . . , θ
(k)
|A|}k, θ(k)B ∈ Rdk×dk+1 , are train-

able parameters and ρ(·) is a point-wise non-linearity, cho-
sen in this work to be ρ(z) = max(0, z). We thus consider
a layer with linear “residual connections” [15], to both ease
with the optimization when using large number of layers, but
also to give the model the ability to perform power iterations.
Since the spectral radius of the learned linear operators in
(3) can grow as the optimization progresses, the cascade
of GNN layers can become unstable to training. In order
to mitigate this effect, we use spatial batch normalization
[17] at each layer. The network depth is chosen to be of
the order of the graph diameter, so that all nodes obtain
information from the entire graph. In sparse graphs with
small diameter, this architecture offers excellent scalability
and computational complexity.

Cascading layers of the form (3) gives us the ability to ap-
proximate a broad family of graph inference algorithms,
including some forms of spectral estimation. Indeed, power
iterations are recovered by bypassing the nonlinear compo-
nents and sharing the parameters across the layers. Some
authors have observed [14] that GNNs are akin to message
passing algorithms, although the formal connection has not
been established, and is out of the scope of this note.

The choice of graph generators encodes prior information on
the nature of the estimation task. For instance, in the com-
munity detection task, the choice of generators is motivated
by a model from Statistical Physics, the Bethe free energy
[26; 7]. In the QAP, one needs generators that are able to
detect distinctive and stable local structures. Multiplicity
of the spectrum of the graph adjacency operator is related
to the (un)effectiveness of certain relaxations [2; 21] (the
so-called (un)friendly graphs), suggesting that generator
families A that contain non-commutative operators may be
more robust on such examples.

4. Numerical Experiments
We consider the GNN and train it to solve random planted
problem instances of the QAP. Given a pair of graphs
G1, G2 with n nodes each, we consider a siamese GNN
encoder producing normalized embeddingsE1, E2 ∈ Rn×d.
Those embeddings are used to predict a matching as follows.
We first compute the outer product E1E

T
2 , that we then

map to a stochastic matrix by taking the softmax along each
row/column. Finally, we use standard cross-entropy loss to
predict the corresponding permutation index. We perform

experiments of the proposed data-driven model both for the
matching and TSP problems 1. Models are trained using
Adamax [19] with lr = 0.001 and batches of size 32. We
note that the complexity of this algorithm is at most O(n2).

4.1. Matching Erdos-Renyi Graphs

In this experiment, we consider G1 to be a random Erdos-
Renyi graph with edge density pe. The graph G2 is a small
perturbation of G1 according to the following error model
considered in [12]:

G2 = G1 � (1−Q) + (1−G1)�Q′ (4)
where Q and Q′ are binary random matrices whose en-
tries are drawn from i.i.d. Bernoulli distributions such
that P(Qij = 1) = pe and P(Q′ij = 1) = pe2 with
pe2 = pe

p
p−1 . The choice of pe2 guarantees that the ex-

pected degrees of G1 and G2 are the same. We train a GNN
with 20 layers and 20 feature maps per layer on a data set
of 20k examples. We fix the input embeddings to be the
degree of the corresponding node. In Figure 1 we report its
performance in comparison with the SDP from [25] and the
LowRankAlign method from [12].

4.2. Matching Random Regular Graphs

Regular graphs are an interesting example because they tend
to be considered harder to align due to their more symmet-
ric structure. Following the same experimental setup as
in [12], G1 is a random regular graph generated using the
method from [18] and G2 is a perturbation of G1 according
to the noise model (4). Although G2 is in general not a
regular graph, the “signal” to be matched to, G1, is a reg-
ular graph. Figure 1 shows that in that case, the GNN is
able to extract stable and distinctive features, outperforming
the non-trainable alternatives. We used the same architec-
ture as 4.1, but now, due to the constant node degree, the
embeddings are initialized with the 2-hop degree.

4.3. Travelling Salesman Problem

Data-driven approaches to the TSP can be formulated in two
different ways. First, one can use both the input graph and
the ground truth TSP cycle to train the model to predict the
ground truth. Alternatively, one can consider only the input
graph and train the model to minimize the cost of the pre-
dicted cycle. The latter is more natural since it optimizes the
TSP cost directly, but the cost of the predicted cycle is not
differentiable w.r.t model parameters. Some authors have
used reinforcement learning techniques to address this issue
[10], [4]. We show promising empirical results of the first
method. Given a graph G and cycle C, the loss is defined as
`(G,C, θ) = DKL(softmax(ĒĒ> − ηI) ‖ 1

2AC), where
Ē is the normalized embedding of G given by the GNN,
AC is the adjacency matrix of the ground truth cycle, and

1Code available at https://github.com/alexnowakvila/QAP_pt

https://github.com/alexnowakvila/QAP_pt
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Figure 1. Comparison of recovery rates for the SDP [25], LowRankAlign [12] and our data-driven GNN, for the Erdos-Renyi model (left)
and random regular graphs (middle). All graphs have n = 50 nodes and edge density p = 0.2. The recovery rate is measured as the
average number of matched nodes from the ground truth. Experiments have been repeated 100 times for every noise level except the SDP,
which have been repeated 5 times due to its high computational complexity. (right) Examples of ground truth solution of the TSP problem
followed by the solution found by the GNN. Note that the paths may be quite different but the costs are very close.

η is a large constant to avoid the diagonal’s influence. We
address the metric TSP, which is an instance of the more
general graph TSP (but still NP-Hard). We generated 20k
training examples and tested on 1k other instances. Each
one generated by uniformly sampling {xi}20i=1 ∈ [0, 1]2.
We build a complete graph with Ai,j = dmax − d2(xi, xj)
as weights. The ground truth cycles are generated with [16],
which has an efficient implementation of the Lin-Kernighan
TSP Heuristic. The architecture has 40 layers and 80 feature
maps per layer. The predicted cycles are generated with a
beam search strategy with beam size of 40. The resulting ap-
proximation ratio 2 over the test set is 1.027, slightly worse
than the auto-regressive data-driven model [31] (1.013) and
Christofides [9] (1.010). Although we hypothesize that the
performance gap with PtrNets [31] may come from archi-
tectural issues, the big limitation of the model compared
to heuristics algorithms is the current data driven approach,
namely, the need for expensive ground truth examples, and
more importantly, the fact that the model is imitating an
heuristic rather than directly optimizing the TSP cost.

5. Discussion
Problems are often labeled to be as hard as their hardest
instance. However, many hard problems can be efficiently
solved for a large subset of inputs. This note attempts to
learn an algorithm for QAP by learning from solved prob-
lem instances drawn from a distribution of inputs. The
algorithm’s effectiveness is evaluated by investigating how
well it works on new inputs from the same distribution. This
can be seen as a general approach and not restricted to QAP.
In fact, another notable example is the community detection
problem under the Stochastic Block Model (SBM) [7]. That
problem is another particularly good case of study because
there exists very precise predictions for the regimes where
the recovery problem is (i) impossible, (ii) possible and effi-
ciently solvable, or (iii) believed that even though possible,
may not be solvable in polynomial time.

2defined as average predicted cost
average ground truth cost

If one believes that a problem is computationally hard for
most instances in a certain regime, then this would mean
that no choice of parameters for the GNN could give a good
algorithm. However, even when there exist efficient algo-
rithms to solve the problem, it does not mean necessarily
that an algorithm will exist that is expressible by a GNN.
On top of all of this, even if such an algorithm exists, it is
not clear whether it can be learned with Stochastic Gradient
Descent on a loss function that simply compares with known
solved instances. However, experiments in [7] suggest that
GNNs are capable of learning algorithms for community
detection under the SBM essentially up to optimal thresh-
olds, when the number of communities is small. We believe
that gaining theoretical understanding of this approach to
this problem (even for two communities) is a fascinating
direction of research. The authors also plan to make a thor-
ough empirical investigation of its performance for a large
number of communities (where the information theoretic
and computational thresholds are suspected to differ).

The performance of these algorithms depends on which
operators are used in the GNN. Adjacency matrices and
Laplacians are natural choices for the types of problem we
considered, but different problems may require different sets
of operators. A natural question is to find a principled way
of choosing the operators. Going back to QAP, it would be
interesting to understand the limits of this problem, both
statistically [23], but also computationally. In particular the
authors would like to better understand the limits of the
GNN approach and more generally of any approach that
first embeds the graphs, and then does linear assignment.

In general, understanding whether the regimes for which
GNNs produce meaningful algorithms matches believed
computational thresholds for some classes of problems is, in
our opinion, a thrilling research direction. It is worth noting
that this approach has the advantage that the algorithms are
learned automatically. However, they may not generalize in
the sense that if the GNN is trained with examples below
a certain input size, it is not clear that it will be able to
interpret much larger inputs, that may need larger networks.
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